
www.manaraa.com

Al al-Bayt University

Prince Hussein bin Abdullah College of Information Technology

Computer Science Department

New and Efficient Algorithms for Single Pattern Matching

By

Rami Hasan Omar Mansi

2009

www.manaraa.com

New and Efficient Algorithms for Single Pattern Matching

By

Rami Hasan Omar Mansi

Supervisor: Dr. Jehad Q. Alnihoud

A Thesis Submitted to the

Scientific Research and Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of Master of Science

in Computer Science

Members of the Committee Approved

Dr. Jehad Q. Alnihoud

Prof. Adnan M. Al-Smadi

Dr. Saad Bani Mohammad

Dr. Ruzayn Quaddoura

Al al-Bayt University

Mafraq, Jordan

2009

www.manaraa.com

 B

Dedication

I dedicate this thesis to my Family. Without their patience, understanding, support, and

most of all, their love, this work would not have been completed.

www.manaraa.com

 C

Acknowledgments

First of all, I would like to thank ALLAH for his graces and guidance. Also, I would

like to convey my sincere thanks and deepest appreciation to my supervisor, Dr. Jehad

Q. Alnihoud, for his help, guidance, patience and encouragement rendered throughout

the different phases of this research.

Also, I would like to thank the members of the thesis examination committee for

their advice and comments that have contributed to the improvement of this study.

www.manaraa.com

 D

Table of Contents

Subject Page

Dedication………………………………………………………………………... B

Acknowledgments……………………………………………………………….. C

Table of Contents………………………………………………………………... D

List of Tables…………………………………………………………………….. F

List of Figures…………………………………………………………………… G

List of Appendices………………………………………………………………. I

List of Abbreviations……………………………………………………………. J

Abstract………………………………………………………………………….. K

Chapter One: Introduction……………………………………………………... 1

1.1. Scope of the Study…………………………………………………………….. 3

1.2. Aims and Objectives………………………………………………………….. 3

1.3. Significance of the Study……………………………………………………… 3

1.4. Contributions…………………………………………………………………. 4

1.5. Thesis Organization…………………………………………………………... 4

Chapter Two: Related Works…………………………………………………... 5

2.1. Brute Force Algorithm………………………………………………………... 5

2.2. Morris-Pratt Algorithm………………………………………………………. 6

2.3. Knuth- Morris-Pratt Algorithm………………………………………………. 9

2.4. Boyer-Moore Algorithm………………………………………………………. 12

2.5. Karp-Rabin Algorithm………………………………………………………... 15

2.6. Comparisons………………………………………………………………….. 18

Chapter Three: Methodology…………………………………………………... 19

Chapter Four: The Proposed Algorithms……………………………………... 22

4.1. FC-RJ Algorithm……………………………………………………………... 22

4.1.1. Pseudocode of FC-RJ Algorithm…………………………………………... 23

4.1.2. Analysis of FC-RJ Algorithm……………………………………………… 25

4.2. FLC-RJ Algorithm……………………………………………………………. 26

4.2.1. Pseudocode of FLC-RJ Algorithm………………………………………… 27

4.2.2. Analysis of FLC-RJ Algorithm……………………………………………. 29

4.3. FMLC-RJ Algorithm…………………………………………………………. 30

4.3.1. Pseudocode of FMLC-RJ Algorithm………………………………………. 31

4.3.2. Analysis of FMLC-RJ Algorithm………………………………………….. 33

4.4. ASCII-Based-RJ Algorithm…………………………………………………... 34

4.4.1. Pseudocode of ASCII-Based-RJ Algorithm……………………………….. 36

4.4.2. Analysis of ASCII-Based-RJ Algorithm…………………………………... 39

Chapter Five: The SMT-RJ Simulator…………………………………............ 41

Chapter Six: Results and Discussion…………………………………………... 46

www.manaraa.com

 E

Chapter Seven: Conclusions and Future Works……………………………… 55

7.1. Conclusions…………………………………………………………………… 55

7.2. Future Works………...……………………………………………………….. 55

References………………………………………………………………………... 56

 59 ...……………………………………………………………………………الملخص

Appendices……………………………………………………………………….. 60

www.manaraa.com

 F

List of Tables

Table Page

Table 2.1: The mpNext table……………………………………………………... 8

Table 2.2: The kmpNext table……………………………………………………. 11

Table 2.3: The bmBc table……………………………………………………….. 14

Table 2.4: The bmGs table……………………………………………………….. 14

Table 2.5: A comparison between string matching algorithms………………….. 18

Table 4.1: The values of ASCII_Arr array (indexed from 0 to 94)……………… 37

Table 4.2: The SKIP_Arr array…………………………………………………... 38

Table 6.1: Experimental results of the tested algorithms…………………...……. 46

Table 6.2: Percentages of enhancements in execution time (m = 14 characters)….. 54

www.manaraa.com

 G

List of Figures

Subject Page

Figure 2.1: Shift in the Morris-Pratt algorithm: v is the border of u…………….. 7

Figure 2.2: Shift in the Knuth-Morris-Pratt algorithm: v is the border of u and a

 ≠ c…………………………………………………………………… 10

Figure 2.3: The good-suffix shift, u re-occurs preceded by a character c different

 from a……………………………………………………………….. 12

Figure 2.4: The good-suffix shift, only a suffix of u re-occurs in x……………… 13

Figure 2.5: The bad-character shift, b occurs in x………………………………. 13

Figure 2.6: The bad-character shift, b does not occur in x………………………. 13

Figure 3.1: Iterative and incremental development method (IIDM)…………….. 20

Figure 3.2: Using IIDM in developing the proposed algorithms………………… 21

Figure 5.1: Interface of the SMT-RJ……………………………………………... 41

Figure 5.2: Generating random text and patterns………………………………... 42

Figure 5.3: The execution time and the number of executed instructions of an

 algorithm…………………………………………………………….. 42

Figure 5.4: Edit menu options…………………………………………………… 43

Figure 5.5: Generating text files…………………………………………………. 43

Figure 5.6: The implemented algorithms in SMT-RJ……………………………. 44

Figure 5.7: Inserting a pattern……………………………………………………. 44

Figure 5.8: Changing font color and size of the found pattern…………………... 45

Figure 6.1: Experimental results of FC-RJ algorithm (Execution time in

 seconds)……………………………………………………………... 47

Figure 6.2: Experimental results of FC-RJ algorithm (Number of executed

 instructions)…………………………………………………………. 47

Figure 6.3: Experimental results of FLC-RJ algorithm (Execution time in

 seconds)…………………………………………………………....... 48

Figure 6.4: Experimental results of FLC-RJ algorithm (Number of executed

 instructions)…………………………………………………………. 48

Figure 6.5: Experimental results of FMLC-RJ algorithm (Execution time in

 seconds)…………………………………………………………....... 49

Figure 6.6: Experimental results of FMLC-RJ algorithm (Number of executed

 instructions)…………………………………………………………. 49

Figure 6.7: Experimental results of ASCII-Based-RJ algorithm (Execution time

 in seconds)…………………………………………………………... 50

Figure 6.8: Experimental results of ASCII-Based-RJ algorithm (Number of

 executed instructions)……………………………………………….. 51

Figure 6.9: Experimental results of the brute force algorithm (Execution time

 in seconds)…………………………………………………………... 51

Figure 6.10: Experimental results of the brute force algorithm (Number of

 executed instructions)………………………………………………. 52

Figure 6.11: Experimental results of the Boyer-Moore algorithm (Execution 52

www.manaraa.com

 H

 time in seconds)…………………………………………………….

Figure 6.12: Experimental results of the Boyer-Moore algorithm (Number of

 executed instructions)………………………………………………. 53

Figure 6.13: Execution times of the tested algorithms…………………………... 53

www.manaraa.com

 I

List of Appendices

Appendix Page

Appendix A: The ASCII Table…………………………………………………… 60

Appendix B: Major Code of the SMT-RJ System………………………………... 61

www.manaraa.com

 J

List of Abbreviations

Abbreviation Meaning

ASCII American Standard Code for Information Interchange

BM Boyer and Moore algorithm

DDR Double Data Rate

DNA Deoxyribo Nucleic Acid

FC-RJ First Character-Rami and Jehad

FLC-RJ First and Last Characters-Rami and Jehad

FMLC-RJ First, Middle and Last Characters-Rami and Jehad

IIDM Iterative and Incremental Development Method

KMP Knuth, Morris and Pratt algorithm

KR Karp and Rabin algorithm

MP Morris and Pratt algorithm

P Pattern string

RAM Random Access Memory

SMT-RJ String Matching Tool-Rami and Jehad

T Text string

www.manaraa.com

 K

Abstract

The string matching problem is defined as finding the occurrences of a pattern P of

length m in a text T of length n. String matching algorithms are considered as one of the

most important components used in implementations of practical software under most

operating systems. In many information retrieval and text-editing applications, it is

necessary to be able to locate quickly some or all occurrences of a user-specified pattern

in a text. This study reviewed the most important and mostly used exact single pattern

matching algorithms in order to enhance the existing algorithms and propose new single

pattern matching algorithms.

In this study, we propose four exact single pattern matching algorithms, First

Character-Rami and Jehad (FC-RJ), First and Last Characters-Rami and Jehad (FLC-

RJ), First, Middle and Last Characters-Rami and Jehad (FMLC-RJ) and ASCII-Based-

Rami and Jehad (ASCII-Based-RJ) algorithms. Furthermore, a string matching tool,

called String Matching Tool- Rami and Jehad (SMT-RJ), has been developed, and the

proposed algorithms, in addition to the Brute Force and Boyer-Moore algorithms, have

been implemented, tested and compared using the developed tool.

The experimental results have shown that the FC-RJ, FLC-RJ and FMLC-RJ

algorithms outperformed the Brute Force algorithm, while the ASCII-Based-RJ

algorithm outperformed both Brute Force and Boyer-Moore algorithms.

www.manaraa.com

 1

Chapter One: Introduction

The string matching problem, also called pattern matching, may be defined as finding

one or more of the occurrences of a pattern P of length m in a text T of length n

(Gongshe, 2006). It has been extensively studied, and many techniques and algorithms

have been designed to solve this problem. These algorithms are mostly used in

information retrieval, bibliographic search, molecular biology, and question answering

applications (Lecroq, 2007; Wu et al., 2007).

String matching is a very important subject in the wider domain of text processing

and its algorithms are the basic components used in implementations of practical

software under most operating systems. Moreover, they emphasize programming

methods that serve as paradigms in other fields of computer science (Watson and

Watson, 2003).

In many information retrieval and text-editing applications, it is necessary to be able

to locate quickly some or all occurrences of a user-specified pattern of words and

phrases in a text (Amir et al., 2002; Alqadi et al., 2007). Furthermore, string matching

has many applications including database query, DNA and protein sequence analysis.

Therefore, the efficiency of string matching has a great impact on the performance of

these applications (Crochemore et al., 2003). Although data are memorized in various

ways, text remains the main and most efficient form to exchange information (Kim and

Kim, 1999; Sheu et al., 2008).

Basically, a string matching algorithm uses a window to scan the text. The size of

this window is equal to the length of the pattern. It first aligns the left ends of the

window and the text. Then it checks if the pattern occurs in the window (this specific

work is called an attempt) and shifts the window to the right. It repeats the same

procedure again until the right end of the window goes beyond the right end of the text

(Amintoosi et al., 2006; Rytter, 2007).

Exact string matching means finding one or all exact occurrences of a pattern in a

text (Idury and Schaffer, 1995; Watson, 2002). Brute force algorithm, as mentioned in

(Charras and Lecroq, 2004), Boyer-Moore (Boyer and Moore, 1977), Morris-Pratt

www.manaraa.com

 2

(Morris and Pratt, 1970), and Knuth-Morris-Pratt (Knuth et al., 1977), are exact string

matching algorithms.

Approximate string matching is the technique of finding approximate (may not be

exact) matches to a pattern in a string (Lipsky and Porat, 2007). The closeness of a

match is measured in terms of the number of primitive operations necessary to convert

the string into an exact match. The usual primitive operations are insertion, deletion and

substitution (Navarro and Fredriksson, 2004). So the input of an approximate string

matching algorithm is a text string T, a pattern string P, and an edit cost bound k, and

the task of the algorithm is to answer the question: can we transform a part of T to P

using at most k additions, deletions, and substitutions? (Cegielski et al., 2006;

Michailidis and Margaritis, 2007).

Some of the exact string matching algorithms have been presented to solve the

problem of searching for a single pattern in a text, such as Boyer-Moore (Boyer and

Moore, 1977), Morris-Pratt (Morris and Pratt, 1970), Knuth-Morris-Pratt (Knuth et al.,

1977) and Karp-Rabin (Karp and Rabin, 1987) algorithms. In the other hand, some have

been presented to solve the problem of searching for multiple patterns in a text, such as

Aho-Corasick (Aho and Corasick, 1975), Wu-Manber (Wu and Manber, 1994), Kim-

Kim (Kim and Kim, 1999), and Cantone-Faro (Cantone and Faro, 2006) algorithms.

Although the Knuth-Morris-Pratt algorithm has better worst-case running time than the

Boyer-Moore algorithm, the latter is known to be extremely efficient in practice

(Crochemore et al., 1994; Amintoosi et al., 2006).

Since 1977, with the publication of the Boyer–Moore algorithm, there have been

many papers published that deal with exact pattern matching, and in particular discuss

and/or introduce variants of Boyer-Moore algorithm.

The string matching literature has had two main categories (Danvy and Rohde,

2006; Franek et al., 2006):

1. Reducing the number of character comparisons required in the worst and

average cases.

2. Reducing the time requirement in the worst and average cases.

www.manaraa.com

 3

This study is an attempt to enhance the time complexity of some common string

matching algorithms in their best, average and worst cases.

In order to reduce the processing time of some common string matching algorithms,

we propose four exact single pattern matching algorithms. The proposed algorithms

improve the length of the shifts of some common string matching algorithms.

The extensive testing of the proposed algorithms yields to speed up some of existing

string matching algorithms.

1.1. Scope of the Study

This study focuses on the exact single pattern matching algorithms and enhancing some

of the existing algorithms that fall in this scope, such as Boyer-Moore algorithm (Boyer

and Moore, 1977) and the Naïve (brute force) algorithm.

1.2. Aims and Objectives

The study aims to propose new and efficient exact single pattern matching algorithms

that can be applied in the real-world applications, such as text editors, question-

answering and database applications. Moreover, the proposed algorithms enhance the

time and space complexity of the existing algorithms.

The study seeks to achieve the following objectives (sub-goals) with respect to the

currently applied exact single pattern matching algorithms:

 Enhancing the preprocessing phase.

 Enhancing the searching phase.

 Enhancing (decreasing) the time and space complexities.

 Facilitating and simplifying the implementation.

 Proposing clearer and simpler algorithms to solve the problem.

1.3. Significance of the Study

This study serves the software developers, software users, and researchers who are

interested in string matching in the following points:

 The developer will be able to use the new algorithms in his/her system, which

will lead to the evolution of the system.

www.manaraa.com

 4

 The developer and the user will be able to decide which algorithm is most

suitable to be used to serve his/her needs based on the nature of the available

data in the system.

 This study helps software developers, software users, and researchers to collect

information about the previously developed algorithms in the field of single

pattern matching.

1.4. Contributions

The research contributions may be recorded as follows:

 Proposing new algorithms which decrease the time and space needed as

compared to some of the currently used algorithms for solving the problem of

single pattern matching.

 The new algorithms simplify the implementation and increase the clarity

compared with other string matching algorithms.

 Developing an efficient simulation tool which specialized in implementing and

testing string matching algorithms.

1.5. Thesis Organization

This thesis is organized as follows:

 Chapter two presents previous related works and gives a comparison between

the previously created algorithms that belong to the scope of this study.

 Chapter three presents the methodology that has been followed during the work

of this study.

 Chapter four introduces the proposed algorithms and presents their detailed

analysis.

 Chapter five describes the simulation tool that has been developed in order to

test the performance of the proposed algorithms.

 Chapter six presents a performance comparison between the proposed

algorithms and other related algorithms.

 Chapter seven draws the conclusions of this study.

www.manaraa.com

 5

Chapter Two: Related Works

2.1. Brute Force Algorithm

The brute force algorithm, as mentioned in (Charras and Lecroq, 2004), consists of

checking, at all positions in the text between (0) and (n – m), where n is the length of the

text and m is the length of the pattern, whether an occurrence of the pattern starts there

or not. Then, after each attempt, it shifts the pattern by exactly one position to the right.

The brute force algorithm requires no preprocessing phase, and a constant extra

space in addition to the pattern and the text. During the searching phase, the text

character comparisons can be done in any order. The time complexity of the searching

phase is O(mn), and the expected number of text character comparisons is (2n).

Example 2.1 illustrates the work of the brute force algorithm.

Example 2.1: A Brute Force Example:

Assume that we have the following text:

M A A C T R A A C O

And we want to find all occurrences of the following pattern in the text:

A A C

Then, the searching will be as follows:

In the first attempt, the algorithm compares the characters of the pattern with the

first m characters of the text. If a mismatch occurred (or a complete match of the whole

pattern), the searching will be shifted by one character to be started at the next character

of the text.

First Attempt:

M A A C T R A A C O

A A C

Second Attempt:

M A A C T R A A C O

 A A C

Third Attempt:

M A A C T R A A C O

 A A C

www.manaraa.com

 6

Fourth Attempt:

M A A C T R A A C O

 A A C

Fifth Attempt:

M A A C T R A A C O

 A A C

Sixth Attempt:

M A A C T R A A C O

 A A C

Seventh Attempt:

M A A C T R A A C O

 A A C

Eighth Attempt:

M A A C T R A A C O

 A A C

2.2. Morris-Pratt Algorithm

A left to right string matching algorithm, called Morris-Pratt algorithm (Morris and

Pratt, 1970), is presented. The design of the Morris-Pratt algorithm follows a tight

analysis of the brute force algorithm, and especially on the way the brute force

algorithm wastes the information gathered during the scan of the text.

Let us look more closely at the brute force algorithm. It is possible to improve the

length of the shifts and simultaneously remember some portions of the text that match

the pattern. This saves comparisons between characters of the pattern and characters of

the text and consequently increases the speed of the search (Charras and Lecroq, 2004).

Let y is a text of length n, and x is a pattern of length m, then consider an attempt at

a left position j on y, that is when the window is positioned on the text factor y[j .. j + m

– 1]. Assume that the first mismatch occurs between x[i] and y[i + j] with 0 ≤ i < m.

Then, x[0 .. i – 1] = y[j .. i + j – 1] = u and a = x[i] ≠ y[i + j] = b. When shifting, it is

reasonable to expect that a prefix v of the pattern matches some suffix of the portion u

of the text. The longest such prefix v is called the border of u (it occurs at both ends of

u). This introduces the notation: mpNext[i] to be the length of the longest border of x[0 ..

i – 1] for 0 ≤ i < m. Then, after a shift, the comparisons can resume between characters

www.manaraa.com

 7

c=x[mpNext[i]] and y[i + j] = b without missing any occurrence of x in y, and avoiding a

backtrack on the text. See Figure 2.1.

y u b

x u a

x v c

Figure 2.1: Shift in the Morris-Pratt algorithm: v is the border of u.

The value of mpNext[0] is set to (-1) to indicate that if a mismatch occurred at the

first character of the pattern, the algorithm cannot backtrack, and it must simply check

the next character, since the value of shifting is computed by (i-mpNext[i]), so if (i) was

(0) then (0 - -1 = 1). The table mpNext can be computed in O(m) space, and O(m) time

to scan the pattern's characters, before the searching phase, applying the same searching

algorithm to the pattern itself, as is x = y.

Depending on the detailed analysis of the Morris-Pratt algorithm in (Morris and

Pratt, 1970), the searching phase can be done in O(n + m) time. The algorithm performs

at most (2n –1) text character comparisons during the searching phase. The delay

(maximum number of comparisons for a single text character) is bounded by m. See

Example 2.2 which illustrates the principle and the work of the Morris-Pratt algorithm.

Example 2.2: A Morris-Pratt Example:

Preprocessing phase:

As illustrated above, the preprocessing phase constructs the mpNext table which

contains the mpNext value of each character in the pattern. The mpNext table is

constructed by finding the length of the longest border of u at each character in the

pattern.

The portion u contains the sub-string from the first character of the pattern to the (i-

1)th character of each character at index (i) except the first character (when i = 0). For

example, if we have the pattern: (ababcda), then the portion u of the fifth character

(character c at i = 4) is the sub-string of the pattern's characters from the first character

to the fourth one, which is (abab). So, the length of the longest border of u is (2), since

www.manaraa.com

 8

the characters (ab) occur at both ends of u. Then the mpNext value of the fifth character

is (2). This means, if a mismatch occurred at the fifth character of the pattern, then the

pattern will be shifted by (2) characters.

This shifting value (2) did not come from the length of the longest border of u, it is

computed by (i – the length of the longest border of u), which is, for this example, (4–2

= 2). The mpNext value of the first character is always set to (-1) to avoid the

backtracking. For the rest of the pattern's characters; the mpNext value is computed as

illustrated before. The shifting value of the pattern when a mismatch occurs at the ith

character is the result of subtracting mpNext[i] from the value (i).

Table 2.1: The mpNext table.

i 0 1 2 3 4 5 6 7

x[i] G C A G A G A G

mpNext[i] -1 0 0 0 1 0 1 0

Searching phase:

First attempt

G C A T C G C A G A G A G T A T A C A G T A C G

1 2 3 4

G C A G A G A G

Shift by: 3 (i-mpNext[i]= 3 - 0)

Second attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]=0 - -1)

Third attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]=0 - -1)

Fourth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1 2 3 4 5 6 7 8

 G C A G A G A G

Shift by: 7 (i-mpNext[i]= 7 - 0)

www.manaraa.com

 9

Fifth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1 2

 G C A G A G A G

Shift by: 1 (i-mpNext[i]= 1 - 0)

Sixth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]= 0 - -1)

Seventh attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]= 0 - -1)

Eighth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]= 0 - -1)

Ninth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-mpNext[i]= 0 - -1)

The Morris-Pratt algorithm performs (20) character comparisons in this example.

In order to simplify the illustration and to make a clear comparison between the

algorithms of this literature; the text and the pattern of the next examples are the same

as those that have been used in Example 2.2.

2.3. Knuth-Morris-Pratt Algorithm

In (Knuth et al., 1977), a left to right string matching algorithm has presented, referred

to as Knuth-Morris-Pratt algorithm. The design of the Knuth-Morris-Pratt (KMP)

algorithm follows a tight analysis of the Morris-Pratt algorithm. Let us look more

closely at the Morris-Pratt algorithm. It is possible to improve the length of the shifts.

Consider an attempt at a left position j, that is when the window is positioned on the

text factor y[j .. j + m – 1]. Assume that the first mismatch occurs between x[i] and y[i +

www.manaraa.com

 11

j] with 0 ≤ i < m. Then, x[0 .. i – 1] = y[j .. i + j – 1] = u and a = x[i] ≠ y[i + j] = b.

When shifting, it is reasonable to expect that a prefix v of the pattern matches some

suffix of the portion u of the text. Moreover, if we want to avoid another immediate

mismatch, the character following the prefix v in the pattern must be different from a.

The longest such prefix v is called the tagged border of u (it occurs at both ends of u

followed by different characters in x). This introduces the notation: kmpNext[i] to be the

length of the longest border of x[0 .. i – 1] followed by a character c different from x[i],

and (-1) if no such tagged border exists, for 0 ≤ i < m. Then, after a shift, the

comparisons can resume between characters c = x[kmpNext[i]] and y[i + j] without

missing any occurrence of x in y, and avoiding a backtrack on the text. See Figure 2.2.

The value of kmpNext[0] is set to (-1) to indicate that if a mismatch occurred at the

first character of the pattern, we cannot backtrack, and we must check the next

character, since the value of shifting is computed by (i-kmpNext[i]), so if (i) was (0)

then (0--1=1). The table kmpNext can be computed in O(m) space and time before the

searching phase, applying the same searching algorithm to the pattern itself, as is x = y.

y u b

x u a

x v c

Figure 2.2: Shift in the Knuth-Morris-Pratt algorithm: v is the border of u and a ≠ c.

As illustrated in the detailed analysis of the KMP algorithm in (Knuth et al., 1977),

the searching phase can be performed in O(n + m) time. The KMP algorithm performs

at most (2n –1) text character comparisons during the searching phase. The delay

(maximum number of comparisons for a single text character) is bounded by logФ(m),

where Ф is the golden ratio (Ф = (1 + 50.5) / 2). See Example 2.3.

Example 2.3: A Knuth-Morris-Pratt Example:

Preprocessing phase:

The preprocessing phase constructs the kmpNext table which contains the kmpNext

value of each character. The kmpNext table is constructed as the mpNext table of the

Morris-Pratt algorithm with a difference.

j i + j

www.manaraa.com

 11

In Morris-Pratt algorithm, mpNext[i] is the length of the longest border of x[0.. i –1],

but in Knuth-Morris-Pratt, kmpNext[i] is the length of the longest border of x[0.. i– 1]

followed by a character c different from x[i], and (-1) if no such tagged border exists,

for 0 ≤ i < m. The value kmpNext[0] is set to (-1), to indicate that if a mismatch occurred

at the first character of the pattern, we cannot backtrack, and we must simply check the

next character. The shifting value of the pattern at the ith character is the result of

subtracting kmpNext[i] from the value (i).

Table 2.2: The kmpNext table.

i 0 1 2 3 4 5 6 7

x[i] G C A G A G A G

kmpNext[i] -1 0 0 -1 1 -1 1 -1

Searching phase:

First attempt

G C A T C G C A G A G A G T A T A C A G T A C G

1 2 3 4

G C A G A G A G

Shift by: 4 (i-kmpNext[i]=3 - -1)

Second attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=0 - -1)

Third attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1 2 3 4 5 6 7 8

 G C A G A G A G

Shift by: 7 (whole match)

Fourth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1 2

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=1 - 0)

Fifth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=0 - -1)

www.manaraa.com

 12

Sixth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=0 - -1)

Seventh attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=0 - -1)

Eighth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

 G C A G A G A G

Shift by: 1 (i-kmpNext[i]=0 - -1).

The Knuth-Morris-Pratt algorithm performs (19) character comparisons in this example.

2.4. Boyer-Moore Algorithm

A string searching algorithm, called Boyer-Moore, is presented in (Boyer and Moore,

1977). The Boyer-Moore (BM) algorithm scans the characters of the pattern from right

to left beginning with the rightmost one. In case of mismatch, or a complete match of

the whole pattern, it uses two pre-computed functions to shift the window to the right.

These two shift functions are called the good-suffix shift and bad-character shift.

Assume that a mismatch occurs between the character x[i] = a of the pattern and the

character y[i+j] = b for the text during an attempt at position (j) on the text. Then, x[i +

1 .. m – 1] = y[i + j + 1 .. j + m – 1] = u and x[i] ≠ y[i + j]. The good-suffix shift consists

in aligning the segment y[i + j + 1 .. j + m – 1] = x[i + 1 .. m – 1] with its rightmost

occurrence in x that is preceded by a character different from x[i], see Figure 2.3. If

there exists no such segment, the shift consists in aligning the longest suffix v of y[i + j

+ 1 .. j + m – 1] with a matching prefix of x, see Figure 2.4.

y b u

x a u shift

 x c u

Figure 2.3: The good-suffix shift, u re-occurs preceded by a character c different from a.

www.manaraa.com

 13

y b u

x a u shift

x v

Figure 2.4: The good-suffix shift, only a suffix of u re-occurs in x.

The bad-character shift consists in aligning the text character y[i + j] with its

rightmost occurrence in x[0 .. m – 2], see Figure 2.5. If y[i + j] does not occur in the

pattern x, no occurrence of x in y can include y[i + j], and the left end of the window is

aligned with the character immediately after y[i + j], namely y[i + j + 1]. See Figure 2.6.

y b u

x a u shift

 x b Contains no b

Figure 2.5: The bad-character shift, b occurs in x.

y b u

x a u shift

 x Contains no b

Figure 2.6: The bad-character shift, b does not occur in x.

Note that the bad-character shift can be negative, thus for shifting the window, the

Boyer-Moore algorithm applies the maximum between the good-suffix shift and the

bad-character shift.

More formally, the two shift functions are defined in (Boyer and Moore, 1977) as

follows:

 The good-suffix shift function is stored in a table bmGs of size m+1.

Two conditions have been defined:

Cs(i,s) : for each k such that i < k < m,s ≥ k or x[k – s] = x[k], and,

Co(i,s) : if s < i then x[i – s] ≠ x[i].

Then, for 0 ≤ i < m :

www.manaraa.com

 14

bmGs[i + 1] = min { s > 0 : Cs(i , s) and Co(i , s) hold }.

And bmGs[0] is defined as the length of the period of x. The computation of the table

bmGs uses a table suff which can be defined as follows:

for 1 ≤ i < m, suff[i] = max {k: x[i – k + 1 .. i] = x[m – k , m - 1] }.

 The bad-character shift function is stored in a table bmBc of size σ.

For c in ∑:

bmBc[c] = min {i: 1 ≤ i < m – 1 and x[m – 1 – i] = c} if c occurs in x, otherwise,

bmBc[c] = m.

As discussed in (Boyer and Moore, 1977), tables bmBc and bmGs can be pre-

computed in time O(m + σ) before the searching phase, and require an extra-space in

O(m + σ). The searching phase time complexity is quadratic O(mn), but at most, (3n)

text character comparisons are performed when searching for a non periodic pattern. On

large alphabets, relatively to the length of the pattern, the algorithm is extremely fast.

See Example 2.4, which illustrates the principle of the Boyer-Moore algorithm.

Example 2.4: A Boyer-Moore Example:

Preprocessing phase:

Table 2.3: The bmBc table.

c A C G T

bmBc[c] 1 6 2 8

Table 2.4: The bmGs table.

i 0 1 2 3 4 5 6 7

x[i] G C A G A G A G

suff[i] 1 0 0 2 0 4 0 8

bmGs[i] 7 7 7 2 7 4 7 1

Searching phase:

First attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 1

G C A G A G A G

Shift by: 1 (bmGs[7]=bmBc[A]-8+8)

Second attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 3 2 1

 G C A G A G A G

Shift by: 4 (bmGs[5]=bmBc[C]-8+6)

www.manaraa.com

 15

Third attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 8 7 6 5 4 3 2 1

 G C A G A G A G

Shift by: 7 (bmGs[0])

Fourth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 3 2 1

 G C A G A G A G

Shift by: 4 (bmGs[5]=bmBc[C]-8+6)

Fifth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 2 1

 G C A G A G A G

Shift by: 7 (bmGs[6])

The Boyer-Moore algorithm performs (17) character comparisons in this example.

2.5. Karp-Rabin Algorithm

In (Karp and Rabin, 1987), an algorithm to find the first occurrence of a pattern x in a

text y using a hashing function has been presented. This algorithm is called Karp-Rabin

algorithm (KR algorithm). Hashing provides a simple method to avoid a quadratic

number of character comparisons in most practical situations. Instead of checking at

each position of the text if the pattern occurs, it seems to be more efficient to check only

if the content of the window looks like the pattern. Example 2.5 clarifies the principle of

the algorithm.

In order to check the resemblance between these two words, a hashing function is

used. This function is called (hash), and should have the following properties:

 Efficiently computable.

 Highly discriminating for strings.

 hash(y[j + 1 .. j + m]) must be easily computable from hash(y[j .. j + m – 1]) and

y[j + m]): hash(y[j + 1 .. j + m]) = rehash(y[j], y[j + m], hash(y[j .. j + m – 1])).

For a word w of length m, let hash(w) be defined as follows:

hash(w[0 .. m – 1]) = (w[0] х 2m – 1 + w[1] х 2m – 2 + … + w[m – 1] x 20 mod q, where q

is a large number. Then, rehash(a , b , h) = ((h – a x 2m – 1) x 2 + b) mod q.

www.manaraa.com

 16

The preprocessing phase of the KR algorithm consists in computing hash(x). It can

be done in constant space and O(m) time complexity. During the searching phase, it is

enough to compare hash(x) with hash(y[j .. j+m–1]) for 0 ≤ j ≤ n – m. If an equality is

found, it is still necessary to check the quality: x = (y[j .. j + m – 1]) character by

character.

The time complexity of the searching phase of the Karp-Rabin algorithm is O(mn)

and its expected number of text character comparisons is O(m + n).

Example 2.5: A Karp-Rabin Example:

Preprocessing phase:

Let hash[y] = 17597.

Searching phase:

First attempt

G C A T C G C A G A G A G T A T A C A G T A C G

G C A G A G A G

hash(y[0 .. 7]) = 17819

Second attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[1 .. 8]) = 17533

Third attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[2 .. 9]) = 17979

Fourth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[3 .. 10]) = 19389

Fifth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[4 .. 11]) = 17339

Sixth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[5 .. 12]) = 17597

www.manaraa.com

 17

Seventh attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[6 .. 13]) = 17102

Eighth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[7 .. 14]) = 17117

Ninth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[8 .. 15]) = 17678

Tenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[9 .. 16]) = 17245

Eleventh attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[10 .. 17]) = 17917

Twelfth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[11 .. 18]) = 17723

Thirteenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[12 .. 19]) = 18877

Fourteenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[13 .. 20]) = 19662

Fifteenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[14 .. 21]) = 17885

Sixteenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[15 .. 22]) = 19197

www.manaraa.com

 18

Seventeenth attempt

G C A T C G C A G A G A G T A T A C A G T A C G

 G C A G A G A G

hash(y[16 .. 23]) = 16961.

The Karp-Rabin algorithm performs (8) character comparisons in this example.

2.6. Comparisons

Table 2.5 shows the main differences between the most important exact single pattern

matching algorithms.

Table 2.5: A comparison between string matching algorithms.

Algorithm Worst Case Complexity Description

Brute Force Quadratic: O(mn)

- Left to right

- The expected number of

text character comparisons

is 2n

Morris-Pratt
Preprocessing: O(m)

Searching: O(n+m)

- Left to right

- Delay is O(m)

Knuth-Morris-Pratt
Preprocessing: O(m)

Searching: O(n+m)

- Left to right

- Delay is logФ(m)

Boyer-Moore
Preprocessing: O(m + σ)

Searching: O(mn)

- Right to left

- 3n text character

comparisons

Karp-Rabin
Preprocessing: O(m)

Searching: O(mn)

- Uses a hashing function

- O(m+n) text character

comparisons

www.manaraa.com

 19

Chapter Three: Methodology

The method that has been followed by this study is the Iterative and Incremental

Development Method (IIDM). IIDM is a cyclic software development process which

developed in response to the weaknesses of the waterfall model. It is an essential part of

the Rational Unified Process, the Dynamic Systems Development Method, Extreme

Programming and generally the Agile Software Development Frameworks

(Sommerville, 2001).

IIDM is a rework scheduling strategy in which time is set aside to revise and

improve parts of the system. The basic idea behind iterative enhancement is to develop

a software system incrementally, allowing the developer to take advantage of what was

being learned during the development of earlier, incremental, deliverable versions of the

system (Sommerville, 2001). Learning comes from both the development and use of the

system, where possible. See Figure 3.1 which shows the main procedures of the IIDM.

The main steps of the IIDM that have been followed in this work are as follows:

1. Starting with a very small version of the system with initial requirements.

2. Analysis: deciding which improvement should be made next and making a small

change.

3. Design: how to code the change.

4. Coding: coding the modification and compiling to make sure that the coding is

correct.

5. Testing: running the program using testing data. If it does not run, the program

must be debugged and either the coding or the design should be changed.

Because the last modification should have been small, it is usually easy to

identify the source of the problem.

6. Continuing around this loop, (from step 2 to 5), until the program is finished, or

the specified time for completing the system is up.

The IIDM is considered as the best suitable method for this study due to many

reasons:

 Using the iterative approach means that there is a run of the program at the end of

each iteration. The run is not for everything; but it is for something the developer

can turn in. This means that the user may be able to use the program for some work

www.manaraa.com

 21

and get a value out of it before it is finished. It also means that the project can be

terminated as soon as the program is good enough.

Figure 3.1: Iterative and incremental development method (IIDM).

 By making very small changes; compiling and testing means that the developer is

much less likely to be faced with a long list of errors with no idea of how to find the

problems. A single missing left brace ({) can produce many error messages. If only

a few lines of code are entered before recompiling, the developer knows that the

error is in those few lines of code and it will be much easier to track it down.

 The developer always has a running version of the program. So, if the developer

(student) runs out of time, he/she can deliver the last iteration, which may not have

all functionality, but it does something. This is usually worth more to the thesis than

a program which does not compile or run.

 It's psychologically more satisfying to get positive feedback on the work by running

the program.

 Corrections early generally take less time than later in the development process.

In the other hand, there are some disadvantages with the IIDM:

 Increments should be relatively small and each increment (modification) should

deliver some system functionality. It may therefore be difficult to map the

customer's requirements onto increments of the right size.

Define
 requirements

 with small version
of the system

Analysis: assign
requirements to
increments and

make small
change

Design: how to

code the
change

Coding: code the

 change and
 compile

Testing: run the
program using
 testing data

Final

system

System incomplete

www.manaraa.com

 21

 Most systems require a set of basic facilities which are used by different parts of the

system. As requirements are not defined in detail until an increment is to be

implemented, it is difficult to identify common facilities that all increments require.

Figure 3.2 describes how we used the IIDM to develop the proposed algorithms, and

how the changes (increments) yield to develop a new algorithm.

Figure 3.2: Using IIDM in developing the proposed algorithms.

Initial Version

FC-RJ

Design

Coding

Testing Assigning

increments and

making changes

FLC-RJ

Design

Coding

Testing Assigning

increments and

making changes

FMLC-RJ

Design

Coding

Testing Assigning

increments and

making changes

ASCII-

Based-RJ

Design

Coding

Testing Final

Testing

Final

Version

www.manaraa.com

 22

Chapter Four: The Proposed Algorithms

4.1. FC-RJ Algorithm

Most of string matching algorithms search for the pattern in the whole text, and match

(compare) most of the text's characters with the pattern's characters (Watson, 2003).

Instead, it is reasonable to assume that it will be more efficient to match the pattern

with the sub-strings of the text which start with the pattern's first character, while

ignoring the rest of the characters in the text. Depending on the concept and the work of

the proposed algorithm, we call it First Character-Rami and Jehad (FC-RJ) algorithm.

The FC-RJ algorithm finds the indices of all occurrences of the first character of the

pattern in the text prior to the searching phase. These indices should be saved in a list

(array) to be accessed during the searching phase, which we name it as

(Occurrence_List). In the searching phase, the algorithm uses the Occurrence_List to

move to the indices of the text that contain the first character of the pattern.

The main procedures of the FC-RJ algorithm are expressed as follows:

a. Preprocessing phase:

1. The algorithm creates a new array called (Occurrence_List) of size (n-m+1),

where n is the size of the text and m is the size of the pattern. The length of the

Occurrence_List is (n-m+1) because it is impossible to the pattern to occur after

the position (n-m) in the text. This array will hold the indices of the occurrences

of the pattern's first character in the text using an integer variable (i) starting

from (0) and incremented by one after each match.

2. The algorithm scans the text in a single pass, using an integer variable (j), and

compares its characters with the pattern's first character. If the current character

of the text (jth character) is equal to the pattern's first character, the algorithm

saves the index of the current character in the text (the value of j) in the ith index

of the Occurrence_List array and increments the value of (i) by one.

b. Searching phase:

1. If the value of (i) is greater than (0); this means the pattern's first character

occurs in the text. So, go to step (2), otherwise; the pattern cannot be found in

the text at all, so go to step (6).

www.manaraa.com

 23

2. Create an integer variable (c), which starts from (0) and reaches the value (i-1),

and incremented by one.

3. If the value of the variable (c) is less than (i); go to step (4). Otherwise, go to

step (6).

4. Scan the sub-string of the text starting from the index (Occurrence_List(c)+1) to

((Occurrence_List(c) + m-1), which represents the size of the pattern, and

compare each character of this sub-string with the corresponding character in the

pattern. If all characters are matched, then this is an occurrence of the pattern in

the text at index (Occurrence_List(c)).

5. Increment the value of (c) by one and go to step (3).

6. Exit.

In step (1) of the searching phase, if the value of (i) is equal to (0), then this means

that the first character of the pattern does not occur in the text, and there is no need to

search for the pattern. In step (2), the value of the variable (c) must not exceed the value

(i-1), which is the number of the occurrences of the pattern's first character in the text.

Example 4.1 illustrates the work of the FC-RJ algorithm.

4.1.1. Pseudocode of FC-RJ Algorithm

The pseudocode of the preprocessing phase of FC-RJ algorithm is expressed as follows:

procedure PRE-FC-RJ(array T[n],array P[m])

1 var j:=i:=0 as integer
2 Create array: Occurrence_List[n-m+1]

3 for j from 0 to n-m do
4 if T(j) == P(0) then
5 Occurrence_List(i):= j
6 i:= i + 1
7 SEARCH-FC-RJ(T[n], P[m], i, Occurrence_List[n-m+1])

end procedure

The pseudocode of the searching phase of the FC-RJ algorithm is as follows:

procedure SEARCH-FC-RJ(array T[n],array P[m], i,

 array Occurrence_List[n-m+1])

1 if i > 0 then
2 if m==1 then output the content of Occurrence_List()

3 else

4 var c:=x:=0, count:=1, as integer
5 var value as Boolean
6 while c < i do
7 value:= true

8
 for x from Occurrence_List(c)+1

 to Occurrence_List(c)+ m-1 do

www.manaraa.com

 24

9 if T(x)≠P(count) then
10 value:= false
11 break the for loop
12 count:= count+1
13 if value==true then
14 output(Occurrence_List(c))
15 c:=c+1
16 count:=1
17 else output("The pattern is not found!")
end procedure

Example 4.1: A single pattern matching example using FC-RJ algorithm:

For simplicity, assume that we have the following text and pattern, and we want to find

all occurrences of the pattern in the text:

Text
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A M A C C O A M B A C H A M A B C O A M A L C O

Pattern
0 1 2 3 4 5

A M A B C O

Then the algorithm creates the Occurrence_List to save the indices of the text's

characters that equal the pattern's first character, which is (A) in this example. The

algorithm searches for the first character of the pattern in the range of indices from (0)

to (n-m=24-6=18) of the text, because what is left is less than the length of the pattern

and it is impossible to the pattern to occur after index (18) in the text. The

Occurrence_List will be as follows:

Occurrence_List
0 1 2 3 4 5 6

0 2 6 9 12 14 18

In the searching phase, the algorithm will make 7 matching attempts to search for

the pattern in the text using the elements values of the Occurrence_List as indices, as

follows:

First attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

Mismatch, go to index 2.

Second attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1

A M A B C O

Mismatch, go to index 6.

www.manaraa.com

 25

Third attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2

A M A B C O

Mismatch, go to index 9.

Fourth attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2

A M A B C O

Mismatch, go to index 12.

Fifth attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3 4 5

A M A B C O

An occurrence of the pattern at index 12. Go to index 14.

Sixth attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1

A M A B C O

Mismatch, go to index 18.

Seventh attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

Mismatch.

The algorithm performed (17) character comparisons in the example.

4.1.2. Analysis of FC-RJ Algorithm

The preprocessing phase of FC-RJ algorithm is concerned with determining and saving

the indices of the text segments that represent the expected occurrences of the pattern.

These indices are saved in the Occurrence_List array of size (i). This variable represents

the number of the expected occurrences of the pattern in the text, which is, at most,

equals to (n-m+1), where n is the length of the text and m is the length of the pattern.

To do so, the preprocessing phase scans the first (n-m) characters of the text. The

worst case of the preprocessing phase arises when the pattern consists of only one

character, since it will check the occurrences of the first character of the pattern in the

whole text in such case. Thus, it is linear in O(n) time in the worst and average cases. In

the best case, when the input text and pattern are of the same length, the preprocessing

phase will compare the first character of the pattern with the first character of the text,

www.manaraa.com

 26

and if a mismatch occurred, it will stop searching and the algorithm will finish.

Therefore, the preprocessing phase of the FC-RJ algorithm takes O(1) time in the best

case.

The searching phase uses the Occurrence_List array to move to the indices of the

text that represent expected occurrences of the pattern using the variable x, which starts

with the value (0) and ends with (i-1), where i is the number of expected occurrences of

the pattern in the text.

The best case of the searching phase of FC-RJ algorithm arises when the variable i

equals to zero. In other words, when there are no occurrences of the pattern in the text,

in this case, the time complexity of the searching phase of FC-RJ algorithm is O(1).

The number of places (indices in the text) that the algorithm starts searching at (i)

represents the number of expected occurrences of the pattern in the text. At each xth

index in the text, the searching phase tries to match the segment (x+1…x+m-1) of the

text with the pattern, character by character. So, the algorithm compares m-1 characters

at each xth index, until it reaches the (i-1)th element of the Occurrence_List array. This

means, it takes (i)*(m-1) time. Thus, the searching phase takes O((i*m)-i) time in the

worst case of FC-RJ algorithm, where i is the number of expected occurrences of the

pattern in the text, and m is the length of the pattern. In terms of n, when i equals to (n-

m+1), the worst case time complexity of the searching phase is O(n*m). The algorithm

performs at most (im)-i text character comparisons during the searching phase.

The preprocessing phase of the FC-RJ algorithm searches the first n-m portion of the

text for the expected occurrences of the pattern. Therefore, FC-RJ algorithm requires

O(n) extra space for the Occurrence_List array, in addition to the original text and

pattern. If the size of the Occurrence_List array (i) is specified dynamically; the

preprocessing phase will require i additional space instead of n-m+1.

4.2. FLC-RJ Algorithm

The concept of the First and Last Characters-Rami and Jehad (FLC-RJ) algorithm

follows the concept of FC-RJ algorithm. It seems more efficient to attempt matching the

pattern only with the sub-strings of the text that start with the pattern's first character

and also end with the pattern's last character.

www.manaraa.com

 27

This technique decreases the number of character comparisons in the text. It can be

achieved by simply adding another condition (restriction) in the preprocessing phase of

FC-RJ algorithm.

Because this algorithm searches for the first and last characters of the pattern in the

text; it requires that the pattern to be of length more than one character to work

efficiently. If the pattern consists of only one character, then this character will be

considered as the first and the last character of the pattern and it will be compared twice

instead of one time at each comparison operation with the text characters. To avoid

occurring of this case, the algorithm behaves as FC-RJ algorithm in such case. In other

words, if the pattern consists of only one character; FLC-RJ algorithm will search the

text only for the first character of the pattern, and it will behave exactly as FC-RJ

algorithm.

4.2.1. Pseudocode of FLC-RJ Algorithm

The pseudocode of the preprocessing phase of FLC-RJ algorithm is as follows:

procedure PRE-FLC-RJ(array T[n],array P[m])

1 var j:=i:=0 as integer

2 Create array: Occurrence_List[n-m+1]
3 if m > 1 then

4 for j from 0 to n-m do

5 if T(j)==P(0) AND T(j+m-1)==P(m-1) then
6 Occurrence_List(i):= j
7 i:= i + 1
8 else
9 for j from 0 to n-m do
10 if T(j) == P(0) then
11 Occurrence_List(i):= j
12 i:= i + 1
13 SEARCH-FLC-RJ(T[n], P[m], i, Occurrence_List[n-m+1])

end procedure

The searching phase should not compare the characters that are already matched

during the preprocessing phase. This implies that, the first and the last characters of

each segment in the text will not be compared with the characters of the pattern during

the searching phase, since they have been matched during the preprocessing phase and

there is no need to be compared again.

www.manaraa.com

 28

The searching phase of FLC-RJ algorithm is as follows:

procedure SEARCH-FLC-RJ(array T[n],array P[m], i,

 array Occurrence_List[n-m+1])

1 if i > 0 then
2 if m==1 then output the content of Occurrence_List()

3 else

4 var c:=x:=0, count:=1, as integer
5 var value as Boolean
6 while c < i do
7 value:= true

8
 for x from Occurrence_List(c)+1

 to Occurrence_List(c)+m-2 do
9 if T(x)≠P(count) then
10 value:= false
11 break the for loop
12 count:= count+1
13 if value==true then
14 output(Occurrence_List(c))
15 c:=c+1
16 count:=1
17 else output("The pattern is not found!")
end procedure

Example 4.2: A single pattern matching example using FLC-RJ algorithm:

Assume that the same text and pattern of Example 4.1 are used in this example utilizing

FLC-RJ algorithm.

Text
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A M A C C O A M B A C H A M A B C O A M A L C O

Pattern
0 1 2 3 4 5

A M A B C O

Then the preprocessing phase will determine the indices of the expected occurrences

of the pattern in the text by comparing the first character of the pattern, which is (A) in

this example, with the first n-m characters of the text, since the pattern cannot be

occurred after the first n-m characters in the text, using a variable j. If the current jth

character in the text is matched with the pattern's first character; the last character of the

pattern will be compared with the (j+m-1)th character of the text, since the segment

(j…j+m-1) represents the length of the pattern (m). If the first and the last characters of

a segment in the text equal the first and the last characters of the pattern respectively,

then this segment will be considered as an expected occurrence of the pattern in the text,

and the index of this segment in the text will be saved in the Occurrence_List array.

www.manaraa.com

 29

The Occurrence_List of this example will be as follows:

Occurrence_List
0 1 2

0 12 18

In the searching phase, the algorithm makes 3 matching attempts to search for the

pattern in the text using the elements values of the Occurrence_List array as indices, as

follows:

First attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

Mismatch, go to index 12.

Second attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3 4

A M A B C O

An occurrence of the pattern at index 12. Go to index 18.

Third attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

Mismatch.

The algorithm performed (10) character comparisons in the example.

As shown in this example, it is clear that FLC-RJ algorithm decreases the number of

character comparisons as compared to FC-RJ algorithm, because comparing the first

and last characters of the pattern eliminates some of the mismatches even before the

searching phase started.

4.2.2. Analysis of FLC-RJ Algorithm

The preprocessing phase scans the first (n-m) characters of the text to determine the

expected occurrences of the pattern in the text. As the preprocessing phase of the FC-RJ

algorithm, the worst case of the preprocessing phase of the FLC-RJ algorithm arises

when the pattern consists of only two characters, since it will check the occurrences of

the first character of the pattern in the whole text except the last character in such case.

Thus, it is linear in O(n) time in the worst and average cases. In the best case, when the

input text and pattern are of the same length, the preprocessing phase will compare the

first character of the pattern with the first character of the text, and if a mismatch

www.manaraa.com

 31

occurred, it will stop searching and the algorithm will finish. Therefore, the

preprocessing phase of the FLC-RJ algorithm takes O(1) time in the best case.

The searching phase uses the Occurrence_List array to reach the indices of the text

that represent the expected occurrences of the pattern using the variable (x), which starts

with the value (0) and ends with (i-1).

The best case of the searching phase of FLC-RJ algorithm arises when the variable

(i) equals to zero. In other words, when there are no occurrences of the pattern in the

text, in this case, the time complexity of the searching phase of FLC-RJ algorithm is

O(1).

The FLC-RJ algorithm uses the Occurrence_List to search the text for the pattern.

The number of places that the algorithm starts searching at is (i), which represents the

number of expected occurrences of the pattern in the text. At each xth index in the text,

the searching phase tries to match the segment (x+1…x+m-2) of the text with the

pattern, character by character. It does not compare the first and the last character of the

pattern and the text's segments; since they already have been matched during the

preprocessing phase. So, the algorithm compares m-2 characters at each xth index, until

it reaches the (i-1)th element of the Occurrence_List array. This means, it takes (i)*(m-2)

time. Thus, the searching phase takes O((i*m)-2i) time in the worst case of FLC-RJ

algorithm, where i is the number of expected occurrences of the pattern in the text, and

m is the length of the pattern. In terms of n, when i equals to (n-m+1), the worst case

time complexity of the searching phase is O(n*m). The algorithm performs at most

(im)-2i text character comparisons during the searching phase.

The preprocessing phase of the FLC-RJ algorithm searches the first n-m portion of

the text for the expected occurrences of the pattern. Therefore, FLC-RJ algorithm

requires O(n) extra space for the Occurrence_List array, in addition to the original text

and pattern. If the size of the Occurrence_List array (i) is specified dynamically; the

preprocessing phase will require i additional space instead of n-m+1.

4.3. FMLC-RJ Algorithm

First, Middle, and Last Characters-Rami and Jehad (FMLC-RJ) algorithm adds another

restriction to a sub-string of the text to be considered as an expected occurrence of the

www.manaraa.com

 31

pattern. It seems more efficient to attempt matching the pattern only with the sub-strings

of the text that start with the pattern's first character and end with the pattern's last

character, and at the same time, they have middle characters equal the pattern's middle

character.

This technique decreases the number of character comparisons in the text during the

searching phase. It can be achieved by adding another condition in the preprocessing

phase of FLC-RJ algorithm.

This algorithm requires the pattern to be of length more than two characters to work

efficiently. Moreover, it should cover the case when the pattern consists of only one or

two characters (m < 3). The preprocessing phase of the FMLC-RJ algorithm behaves as

the preprocessing phase of the FLC-RJ algorithm if the length of the pattern is two

characters and as the preprocessing phase of the FC-RJ algorithm if it is only one

character.

The position of the middle character can be determined by getting the floor value of

dividing the length of the pattern over two. Thus, the index of the middle character in

the pattern is defined as: mid = floor (m/2).

4.3.1. Pseudocode of FMLC-RJ Algorithm

The preprocessing phase of FMLC-RJ algorithm can be expressed as follows:

procedure PRE-FMLC-RJ(array T[n],array P[m])

1 var j:=i:=0, mid:= floor(m/2) as integer
2 Create array: Occurrence_List[n-m+1]

3 if m > 2 then
4 for j from 0 to n-m do

5 if T(j)==P(0)AND T(j+mid)==P(mid)AND T(j+m-1)==P(m-1) then
6 Occurrence_List(i):= j
7 i:= i + 1
8 else
9 if m > 1 then

10 for j from 0 to n-m do

11 if T(j)==P(0) AND T(j+m-1)==P(m-1) then
12 Occurrence_List(i):= j
13 i:= i + 1
14 else
15 for j from 0 to n-m do
16 if T(j) == P(0) then
17 Occurrence_List(i):= j
18 i:= i + 1
19 SEARCH-FMLC-RJ(T[n], P[m], i, Occurrence_List[n-m+1])

end procedure

www.manaraa.com

 32

The searching phase compares the characters of the pattern with the characters of

each expected occurrence except the first, middle, and last characters, which have been

matched in the preprocessing phase.

The searching phase of FMLC-RJ can be illustrated as follows:

procedure SEARCH-FMLC-RJ(array T[n],array P[m], i,

 array Occurrence_List[n-m+1])

1 if i > 0 then
2 if m==1 then output the content of Occurrence_List()

3 else

4 var c:=x:=0, count:=1, as integer
5 var value as Boolean
6 while c < i do
7 value:= true

8
 for x from Occurrence_List(c)+1

 to Occurrence_List(c)+ m-2 do
9 if count==mid then increment x and count by 1

10 if T(x)≠P(count) then
11 value:= false
12 break the for loop
13 count:= count+1
14 if value==true then
15 output(Occurrence_List(c))
16 c:=c+1
17 count:=1
18 else output("The pattern is not found!")
end procedure

Example 4.3: A single pattern matching example using FMLC-RJ algorithm:

Suppose that the same text and pattern of Example 4.1 are used in this example using

FMLC-RJ algorithm, as follows:

Text
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A M A C C O A M B A C H A M A B C O A M A L C O

Pattern
0 1 2 3 4 5

A M A B C O

The preprocessing phase searches for the segments of the text where the first,

middle, and last characters of these segments equal the first, middle, and last characters

of the pattern respectively.

Since this condition only achieved at index (12) in the text of this example, then the

Occurrence_List will be consisting of one element, as follows:

Occurrence_List
0

12

www.manaraa.com

 33

This means, there is only one expected occurrence of the pattern at index (12) of the

text. In the searching phase, the algorithm will make only one matching attempt, instead

of (7) attempts of FC-RJ algorithm and (3) attempts of FLC-RJ algorithm, to search for

the same pattern in the same text using the elements values of the Occurrence_List as

indices, as follows:

First attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

An occurrence of the pattern at index 12.

The algorithm performed (3) character comparisons in this example.

In Example 4.3, it is clear that FMLC-RJ algorithm decreased the number of

character comparisons of both, FC-RJ and FLC-RJ algorithms, since this algorithm

performed only 3 character comparisons while FC-RJ performed 17, and FLC-RJ

performed 10 character comparisons to search for the same pattern in the same text used

in the three algorithms.

4.3.2. Analysis of FMLC-RJ Algorithm

The preprocessing phase of the FMLC-RJ algorithm scans the first (n-m) portion of the

text to determine the expected occurrences of the pattern in the text. As the

preprocessing phase of the FC-RJ and FLC-RJ algorithms, the worst case of the

preprocessing phase of the FMLC-RJ algorithm arises when the pattern consists of only

three characters, since it will check the occurrences of the first character of the pattern

in the whole text except the last two characters in such case. Thus, it is linear in O(n)

time in the worst and average cases. In the best case, when the input text and pattern are

of the same length, the preprocessing phase will compare the first character of the

pattern with the first character of the text, and if a mismatch occurred, it will stop

searching and the algorithm will finish. Therefore, the preprocessing phase of the

FMLC-RJ algorithm takes O(1) time in the best case.

The best case of the searching phase of FMLC-RJ algorithm arises when the

variable (i) equals to zero. In other words, when there is no any expected occurrence of

the pattern in the text, the best case time complexity of the searching phase of FMLC-

RJ algorithm is O(1).

www.manaraa.com

 34

The FMLC-RJ algorithm uses the Occurrence_List to search the text for the pattern.

The number of places that the algorithm starts searching at is (i), which represents the

number of expected occurrences of the pattern in the text. At each xth index in the text,

the searching phase tries to match the segment (x+1…x+m-2), except the middle

character, of the text's segments with the pattern, character by character. It does not

compare the first, middle, and last characters of the pattern with those of the text's

segments; since they already have been matched during the preprocessing phase. So, the

algorithm compares m-3 characters at each xth index, until it reaches the (i-1)th element

of the Occurrence_List array. This means, it takes (i)*(m-2) time. Thus, the searching

phase takes O((i*m)-2i) time in the worst case of FMLC-RJ algorithm, where i is the

number of expected occurrences of the pattern in the text, and m is the length of the

pattern. In terms of n, when i equals to (n-m+1), the worst case time complexity of the

searching phase is O(n*m). The algorithm performs at most (im)-3i text character

comparisons during the searching phase.

The preprocessing phase of the FMLC-RJ algorithm searches the first n-m portion of

the text for the expected occurrences of the pattern. Thus, FMLC-RJ algorithm requires

O(n) extra space for the Occurrence_List array, in addition to the original text and

pattern. If the size of the Occurrence_List array (i) is specified dynamically; the

preprocessing phase will require i additional space instead of n-m+1.

4.4. ASCII-Based-RJ Algorithm

The preprocessing phase of the ASCII-Based-Rami and Jehad (ASCII-Based-RJ)

algorithm finds the indices of the characters in the text that do not occur in the pattern.

Assume that a character at index (z) in the text does not occur in the pattern, then the

pattern cannot start at any position in the segment (z-m+1…z) of the text, where m is the

length of the pattern. Thus, this segment, and all such segments, will be excluded during

searching for the first character of the pattern in the text.

The preprocessing phase creates a zero-based array called ASCII_Arr of size (95)

elements (indexed from 0 to 94). This size represents the number of the printable

characters in the ASCII table (American Standard Code for Information Interchange).

These characters are from (space), which has the code (32), to (~), which has the code

(126), in the ASCII table.

www.manaraa.com

 35

The algorithm scans the characters of the pattern and for each character it increments

the value of the element in the ASCII_Arr array using the actual ASCII code for that

character minus (32) as index. For example, if the character (m), which has the code

(109) in the ASCII table, occurs in the pattern, then the element in the ASCII_Arr

array at index (77), (109-32=77), will be incremented by one. Therefore, the index of

the (space) is (0), and the index of (~) is (94) in ASCII_Arr array.

After that, the algorithm creates a new array, called SKIP_Arr, to hold the indices

of the text that the pattern cannot start occurring at. These indices are determined by

scanning the text's characters from right to left, and the segment (z-m+1…z) for each

index (z) in the text that contains a character does not appear in the pattern will be

ignored during searching for the pattern's first character in the text. The range from (z-

m+1) to (z) represents (m), which is the length of the pattern.

The algorithm determines whether a character in the text occurs in the pattern or not

by checking the corresponding element in the ASCII_Arr array (ASCII code of that

character minus 32). If the value of the element in that index is zero, then this character

(z) of the text did not appear in the pattern. Thus, the segment (z-m+1…z) in the

SKIP_Arr array will hold the value (-1) to denote that this segment will be ignored

during searching for the pattern's first character.

At this stage, the algorithm checks the elements of the SKIP_Arr array to search

for the occurrences of the pattern's first character in the text. If the value of the element

is 0 (the initial value), then it checks the text at index equal to the current index of the

SKIP_Arr array, and if the character of that index in the text is equal to the pattern's

first character, the index will be saved in the Occurrence_List using a variable (i). The

element will be skipped if it is (-1).

This technique decreases the number of text character comparisons. Furthermore, it

decreases the number of expected occurrences of the pattern in the text. As a result, it

decreases the time complexity of searching for a pattern in a text.

www.manaraa.com

 36

4.4.1. Pseudocode of ASCII-Based-RJ Algorithm

The pseudocode of the preprocessing phase is expressed as follows:

procedure PRE-ASCII-BASED(array T[n],array P[m])

1 var j:=i:=y:=z:=0, x:=n-1 as integer
2 Create array: ASCII_Arr[95] initialized by 0's

3 Create array: SKIP_Arr[n] initialized by 0's

4 Create array: Occurrence_List[n-m+1] initialized by 0's

5 for j from 0 to m-1 do
6 Increment ASCII_Arr(ASCII_CODE(P(j))-32)

7 for x from n-1 downto 0 do

8 if ASCII_Arr(ASCII_CODE(T(x))-32)==0 AND x >= m-1 then

9 for y from x-m+1 to x do

10 if SKIP_Arr(y) == 0 then

11 SKIP_Arr(y):=-1

12 else

13 Break the loop

14 else

15 if ASCII_Arr(ASCII_CODE(T(x))-32)==0 AND x < m-1 then

16 for y from 0 to x do

17 if SKIP_Arr(y) == 0 then

18 SKIP_Arr(y):=-1

19 else

20 Break the loop

21 for z from 0 to n-m do

22 if SKIP_Arr(z) ≠ -1 AND T(z)==P(0) then

23 Occurrence_List(i):= z

24 i:=i+1

25 SEARCH-ASCII-BASED(T[n], P[m],i, Occurrence_List[n-m+1])

end procedure

The searching phase of ASCII-Based-RJ Algorithm is as follows:

procedure SEARCH-ASCII-BASED(array T[n], array P[m], i,

 array Occurrence_List[n-m+1])

1 if i > 0 then
2 if m==1 then output the content of Occurrence_List()

3 else

4 var c:=x:=0, count:=1, as integer
5 var value as Boolean
6 while c < i do
7 value:= true

8
 for x from Occurrence_List(c)+1

 to Occurrence_List(c)+ m-1 do
9 if T(x)≠P(count) then
10 value:= false
11 break the for loop
12 count:= count+1
13 if value==true then
14 output(Occurrence_List(c))
15 c:=c+1
16 count:=1
17 else output("The pattern is not found!")
end procedure

www.manaraa.com

 37

Example 4.4: A single pattern matching example using ASCII-Based-RJ algorithm:

Assume that the same text and pattern of Example 4.1 are used in this example as

follows:

Text
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A M A C C O A M B A C H A M A B C O A M A L C O

Pattern
0 1 2 3 4 5

A M A B C O

Step 1: The algorithm scans the characters of the pattern, and for each character in the

pattern it increments the value of the ASCII_Arr by one at index equals to the code of

that character in the ASCII table minus (32).

In other words, the value of the corresponding element in the ASCII_Arr of each

character in the pattern will be incremented by one, using the ASCII code of that

character minus (32) as index in the ASCII_Arr.

Table 4.1 shows the ASCII_Arr array after incrementing the corresponding elements

of each character in the pattern. Actually, the ASCII_Arr is of length (95), indexed from

(0) to (94). But for simplicity, we have shown only the indices of the characters of the

pattern in Table 4.1, while the rest of indices will contain (0), which is the initial value

of the elements of the ASCII_Arr.

As shown before, for each character in the text, there is a corresponding character in

the ASCII_Arr at index equals to the ASCII code of that character minus (32).

Table 4.1: The values of ASCII_Arr array (indexed from 0 to 94)

Character Index in ASCII_Arr (ASCII Code-32) Frequency

A 65 – 32 = 33 2

M 77 – 32 = 45 1

B 66 – 32 = 34 1

C 67 – 32 = 35 1

O 79 – 32 = 47 1

Step 2: The algorithm scans the characters of the text from right to left starting at the

last character. If the corresponding value of the current character (z) of the text in the

ASCII_Arr is zero, then this means that this character (in the text) does not occur in the

pattern. Thus, the range from (z-m+1…z) in the text will be ignored during the

searching phase, since the pattern cannot starts at any index of this range in the text.

www.manaraa.com

 38

The algorithm saves this range in the SKIP_Arr, which is of length n, where n is the

length of the text. The algorithm overwrites the values of the elements of indices of the

range (z-m+1…z) in the SKIP_Arr by the value (-1) to be skipped during searching for

the first character of the pattern. The SKIP_Arr array is shown in Table 4.2. Note that,

the indices that have a gray background will be excluded during the searching phase,

since the pattern can not occur in these indices.

Table 4.2: The SKIP_Arr array

Index Value Index Value

0 0 12 0

1 0 13 0

2 0 14 0

3 0 15 0

4 0 16 -1

5 0 17 -1

6 -1 18 -1

7 -1 19 -1

8 -1 20 -1

9 -1 21 -1

10 -1 22 0

11 -1 23 0

Since the SKIP_Arr is of length n, which is the length of the text, the algorithm uses

it to search for the pattern's first character in the text only at indices that have the value

(0) in the SKIP_Arr, while ignoring the indices that have the value (-1).

Step 3: The algorithm saves the indices of the text where the pattern's first character

occurs in the Occurrence_List array to be used during the searching phase.

The Occurrence_List array will be as follows:

Occurrence_List
0 1 2 3

0 2 12 14

Step 4: The algorithm uses the searching phase of FC-RJ algorithm and makes 4

matching attempts as follows:

First attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3

A M A B C O

 Mismatch, go to index 2.

www.manaraa.com

 39

Second attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1

A M A B C O

Mismatch, go to index 12.

Third attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1 2 3 4 5

A M A B C O

An occurrence of the pattern at index 12. Go to index 14.

Fourth attempt:

A M A C C O A M B A M H A M A B C O A M A L C O

 1

A M A B C O

Mismatch.

The algorithm performed (10) character comparisons in the example.

4.4.2. Analysis of ASCII-Based-RJ Algorithm

The worst case of the preprocessing phase of ASCII-Based-RJ algorithm arises when

each character of the text does not occur in the pattern, or, when for each m characters

in the text, only the last character of that segment does not occur in the pattern. In this

case, the lines (from 7 to 14) of the pseudocode of the preprocessing phase of ASCII-

Based-RJ algorithm take O(2n) time, which is simplified as O(n).

The best case of the preprocessing phase of ASCII-Based-RJ algorithm occurs when

all characters of the text appear in the pattern. This means, there is no any character

exists in the text and does not occur in the pattern. In this case, the preprocessing phase

takes O(n) time.

The preprocessing phase builds the Occurrence_List array, which holds the indices

of the expected occurrences of the pattern in the text. During the searching phase, the

algorithm uses the Occurrence_List to match the expected occurrences of the pattern in

the text with the characters of that pattern.

In the best case, when there is no any expected occurrence of the pattern in the text,

the searching phase of ASCII-Based-RJ algorithm takes a constant time in O(1).

Therefore, the overall time complexity of the algorithm is O(n).

www.manaraa.com

 41

In the worst case, the searching phase of the algorithm scans (m-1) characters (i)

times, where (i) is the number of expected occurrences of the pattern in the text. Thus,

the algorithm takes O((i*m)-i) time in the worst case.

The ASCII-Based-RJ algorithm requires (95) additional space for the ASCII_Arr

array, (n) space for the SKIP_Arr array, and (n-m+1) space for the Occurrence_List

array. So, it needs (2n-m+96), which is O(n) extra space, in addition to the original text

and pattern.

www.manaraa.com

 41

Chapter Five: The SMT-RJ Simulator

To compare between the performance of our algorithms with other common algorithms;

we have built a simulator, which is referred to as String Matching Tool-Rami and Jehad

(SMT-RJ), using Visual Basic 6.0. The simulator represents a string matching tool (a

text editor). In this tool, FC-RJ, FLC-RJ, FMLC-RJ, and ASCII-Based-RJ algorithms

have been implemented. Figure 5.1 shows the interface of the SMT-RJ.

Figure 5.1: Interface of the SMT-RJ.

Furthermore, the Naïve (brute force) algorithm as mentioned in (Charras and

Lecroq, 2004) and Boyer-Moore algorithm (Boyer and Moore, 1977) have been

implemented in the tool to be compared with the proposed algorithms. These algorithms

have been selected because they have been shown to perform well in (Boyer and Moore,

1977; Charras and Lecroq, 2004) compared to other existing algorithms.

We have exhaustively tested the implemented algorithms on random test data. To

gather the test patterns, we wrote a program which randomly selects a substring of a

given length from the source string, see Figure 5.2. As the lengths of the test patterns

that Boyer and Moore used in (Boyer and Moore, 1977), and to get a high confidence

interval and low error percentage, we used this program to select 300 patterns of length

m for each m from 1 to 14. We then used the implemented algorithms in our tool to

search for each of the test patterns in its source string.

www.manaraa.com

 42

Figure 5.2: Generating random text and patterns.

All of the characters for both the patterns and the text were in the main memory,

rather than a secondary storage medium, during running the tool.

We have measured the cost of each implemented algorithm in two ways: The first is

the total number of instructions that actually got executed; using an integer variable

which incremented after each executed instruction. The second is the execution time in

seconds; using a built-in function which gets the execution time in seconds. See Figure

5.3.

Figure 5.3: The execution time and the number of executed instructions of an algorithm.

www.manaraa.com

 43

We then averaged these measures across all 300 samples for each pattern length. We

have performed these experiments for a string of length 10,000 randomly generated

characters. The SMT-RJ is easy-to-use toolkit for string matching. In addition to the

tested algorithms, it provides some of standard options that exist in the large text

editors, such as: Print, Cut, Copy, Paste, Help, Close, and Exit. See Figure 5.4.

Figure 5.4: Edit menu options.

The SMT-RJ allows the user to generate three types of text files: English small

letters, English capital letters, and a mixture of English small and capital letters and

special symbols, of any length (number of characters) specified by the user. See Figure

5.5.

Figure 5.5: Generating text files.

www.manaraa.com

 44

The user is allowed to use any of the implemented algorithms to search for a pattern.

See Figure 5.6.

Figure 5.6: The implemented algorithms in SMT-RJ.

The system allows the user to insert a pattern and to generate random patterns to be

used in the searching process. See Figure 5.7.

Figure 5.7: Inserting a pattern.

www.manaraa.com

 45

If the searched pattern is found, the font color and font size for the pattern will be

changed in all places that it has been found in the source text to make sure that the tool

gives correct results. See Figure 5.8.

Figure 5.8: Changing font color and size of the found pattern.

The main specifications of the computer that the experiments were done on are as

follows:

 Processor: Intel Core 2 Due, 2.00 Giga Hertz.

 RAM: DDR2, 3.00 Giga Bytes.

 Cache Memory: 2 Mega Bytes.

 Operating System: Windows Vista Home Premium.

www.manaraa.com

 46

Chapter Six: Results and Discussion

In this chapter, we analyze and discuss the simulation results that we obtained from

testing the FC-RJ, FLC-RJ, FML-RJ, ASCII-Based-RJ, Brute Force as mentioned in

(Charras and Lecroq, 2004), and Boyer-Moore (Boyer and Moore, 2007) algorithms

using the SMT-RJ. We used the same testing data for each algorithm and the

experiments were on the same computer and operating system.

Table 6.1 shows the experimental results of the tested algorithms. The execution

time in seconds is denoted by (T) while the number of executed instructions is

abbreviated by (Inst) for each algorithm.

Table 6.1: Experimental results of the tested algorithms.

Pattern

length

FC-RJ FLC-RJ FMLC-RJ ASCII-Based Brute Force Boyer-Moore

T Inst T Inst T Inst T Inst T Inst T Inst

1 2.70 1087 2.90 50 3.00 400 3.45 10100 3.30 30000 3.50 29470

2 3.28 1215 2.87 34 2.90 50 2.91 7000 3.50 30414 3.20 15592

3 3.51 1185 2.95 54 2.50 83 3.11 9991 4.36 30421 3.61 10635

4 3.67 1157 2.98 68 2.71 82 2.80 10000 4.85 30425 3.49 9225

5 3.70 1226 3.10 69 3.10 96 2.90 9975 4.95 30461 3.20 9645

6 4.00 1279 3.70 90 3.50 56 3.20 7000 4.98 30452 3.40 7945

7 4.30 1236 3.50 78 3.30 96 3.00 10009 5.20 30480 3.20 6967

8 4.40 1241 4.00 47 3.80 63 3.20 9996 5.30 30459 3.51 7672

9 4.70 1159 4.30 76 4.10 170 3.60 10000 5.40 30501 3.70 7400

10 4.90 1236 4.50 84 4.30 132 3.70 10012 5.50 30507 3.80 6660

11 5.20 1226 4.80 125 4.50 192 3.80 7300 5.80 30539 4.10 6230

12 5.70 1339 5.20 55 5.00 143 4.10 8400 6.00 30543 4.40 7549

13 5.80 1579 5.50 98 5.20 224 4.20 9900 6.30 30528 4.35 8566

14 6.30 1600 5.70 80 5.40 240 4.40 10016 6.80 30535 4.50 10000

In Table 6.1, the execution time (T) and the number of executed instructions (Inst)

of an algorithm represent the average of 300 runs of the algorithm using the same

pattern length (m) and random characters of the pattern at each run.

Although the FLC-RJ algorithm behaves as FC-RJ algorithm in the case where the

pattern is of length only one character, and the FMLC-RJ algorithm behave as FLC-RJ

if the pattern was of length two characters; but they consumed more time than the FC-

RJ algorithm in the case where the pattern is of length one character. That because, the

FLC-RJ and FMLC-RJ algorithms have to check the length of the pattern before they

start searching for the first character of the pattern. In other words, the differences in the

execution times are because that the FLC-RJ and FMLC-RJ algorithms use an if-

www.manaraa.com

 47

statement to check if the length of the pattern is three or more characters, as in the

FMLC-RJ algorithm, or if it is two or more characters, as in the FLC-RJ algorithm.

Figure 6.1 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 utilizing FC-RJ algorithm.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
o

n
d

s

Execution Time

Figure 6.1: Experimental results of FC-RJ algorithm (Execution time in seconds).

It is apparent that the best performance of the FC-RJ algorithm is when the length of

the pattern was one character. This result is reasonable, since the algorithm only outputs

the content of the Occurrence-List array if the pattern's length is only one character. It is

obvious that the execution time increases as the pattern gets longer. Figure 6.2 shows

the average number of the executed instructions for each patterns sample of each pattern

length from 1 to 14 when the FC-RJ algorithm is used. In the figure, it is clear that the

number of executed instructions increases as the pattern gets longer.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x

e
c

u
te

d
 i
n

s
tr

u
c

ti
o

n
s

Executed Instructions

Figure 6.2: Experimental results of FC-RJ algorithm (Number of executed instructions).

www.manaraa.com

 48

Figure 6.3 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 when the FLC-RJ algorithm is used.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
o

n
d

s

Execution Time

Figure 6.3: Experimental results of FLC-RJ algorithm (Execution time in seconds).

The best performance of the FLC-RJ algorithm is when the length of the pattern was

two characters. The reason behind this result is that the algorithm only outputs the

content of the Occurrence-List array if the pattern's length is two characters.

Figure 6.4 describes the average number of the executed instructions for each

patterns sample of each pattern length from 1 to 14 when the FLC-RJ algorithm is used.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x

e
c

u
te

d
 i
n

s
tr

u
c

ti
o

n
s

Executed Instructions

Figure 6.4: Experimental results of FLC-RJ algorithm (Number of executed instructions).

It is clear that the FLC-RJ algorithm executes less number of instructions when the

length of the pattern (m) is relatively short, especially, when the length of the pattern

www.manaraa.com

 49

was only two characters. In this case, the algorithm only outputs the content of the

Occurrence_List array.

Figure 6.5 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 utilizing FMLC-RJ algorithm.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
o

n
d

s

Execution Time

Figure 6.5: Experimental results of FMLC-RJ algorithm (Execution time in seconds).

The best performance of the FMLC-RJ algorithm is when the length of the pattern

was three characters. The algorithm searches for the first, middle, and last characters of

the pattern and then outputs the content of the Occurrence-List array as a result. The

execution time is done in the preprocessing phase in this case.

Figure 6.6 shows the average number of the executed instructions for each patterns

sample of each pattern length from 1 to 14 when the FMLC-RJ algorithm is used.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x

e
c

u
te

d
 i
n

s
tr

u
c

ti
o

n
s

Executed Instructions

Figure 6.6: Experimental results of FMLC-RJ algorithm (Number of executed instructions).

www.manaraa.com

 51

When the length of the pattern (m) was one character, the FMLC-RJ algorithm

passes through two checks; the first is if m equals (1) then it behaves as the FC-RJ

algorithm, and the seconds check is if m equals (2) then it behaves as the FMLC-RJ

algorithm. Therefore, the algorithm executes greater number of instructions in these two

cases.

Figure 6.7 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 when the ASCII-Based-RJ algorithm is used.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 s

e
c

o
n

d
s

Execution Time

Figure 6.7: Experimental results of ASCII-Based-RJ algorithm (Execution time in seconds).

The results reveal that the best performance of the ASCII-Based-RJ algorithm is

when the pattern was relatively long (more than 3 characters). This result is reasonable,

because the segments of the text that will be excluded during the searching phase

increase as the pattern gets longer.

Figure 6.8 shows the average number of the executed instructions for each patterns

sample of each pattern length from 1 to 14 when the ASCII-Based-RJ algorithm is used.

The number of executed instructions ranges between (7000) and (1000) in all

lengths of the sample patterns. The reason behind this is that the ASCII-Based-RJ

algorithm is independent of the length of the pattern, and it depends on the number of

the characters which appear in the pattern and do not appear in the text.

www.manaraa.com

 51

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x

e
c

u
te

d
 i
n

s
tr

u
c

ti
o

n
s

Executed Instructions

Figure 6.8: Experimental results of ASCII-Based-RJ algorithm (Number of executed

instructions).

Figure 6.9 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 utilizing brute force algorithm.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x

e
c

u
ti

o
n

 t
im

e
 i
n

 s
e

c
o

n
d

s

Execution Time

Figure 6.9: Experimental results of the brute force algorithm (Execution time in seconds).

The best performance of the brute force algorithms is when the length of the pattern

was relatively short. Since the algorithm compares almost m characters at each index of

the text, the execution time increases as m gets larger.

Figure 6.10 shows the average number of the executed instructions for each patterns

sample of each pattern length from 1 to 14 utilizing brute force algorithm.

www.manaraa.com

 52

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x

e
c

u
te

d
 i
n

s
tr

u
c

ti
o

n
s

Executed Instructions

Figure 6.10: Experimental results of the brute force algorithm (Number of executed

instructions).

The brute force algorithm uses a nested loop when searching for the pattern ion the

text. It almost always has the same number of the executed instructions.

Figure 6.11 shows the average execution time in seconds for each patterns sample of

each pattern length from 1 to 14 when the Boyer-Moore algorithm is used.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x
e
c
u

ti
o

n
 t

im
e
 i

n
 s

e
c
o

n
d

s

Execution Time

Figure 6.11: Experimental results of the Boyer-Moore algorithm (Execution time in seconds).

It can be seen in the figure that the best performance of the Boyer-Moore algorithm

is when the pattern was relatively long (more than 4 characters). This result is

reasonable, because the algorithm collects more information about the pattern when it is

long.

Figure 6.12 shows the average number of the executed instructions for each patterns

sample of each pattern length from 1 to 14 when the Boyer-Moore algorithm is used.

www.manaraa.com

 53

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

N
u

m
b

e
r

o
f

e
x
e
c
u

te
d

 i
n

s
tr

u
c
ti

o
n

s

Executed Instructions

Figure 6.12: Experimental results of the Boyer-Moore algorithm (Number of executed

instructions).

The number of the executed instructions decreases as the pattern gets longer. This

because the Boyer-Moore algorithm uses the prefixes and suffixes instead using one

character (which caused the mismatch to occur) when deciding the length of the shifts.

In other words, when the length of the pattern is short, then the chance of finding a

common prefix and suffix of the portion u is weak.

Figure 6.13 shows a comparison between execution times of the FC-RJ, FLC-RJ,

FMLC-RJ, ASCII-Based-RJ, Brute Force, and Boyer-Moore algorithms for each

patterns sample of each pattern length from 1 to 14.

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern length

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 s
e

c
o

n
d

s

FC-RJ

FLC-RJ

FMLC-RJ

ASCII-Based-RJ

Brute Force

Boyer-Moore

Figure 6.13: Execution times of the tested algorithms.

It is obvious that the proposed algorithms enhance the execution time of string

matching as compared to the brute force and Boyer-Moore algorithms. This

www.manaraa.com

 54

enhancement is calculated by considering the differences in execution times of the

algorithms to search for 14 patterns samples as recorded in Table 6.1.

Table 6.2 presents the percentages of enhancements of the proposed algorithms as

compared to the brute force and Boyer-Moore algorithms. Note that, the negative

percentage of an algorithm denotes that the proposed algorithm was worse than the one

that compared with it.

Table 6.2: Percentages of enhancements in execution time (m = 14 characters).

Algorithm Enhancement on Brute Force Enhancement on Boyer-Moore

FC-RJ 7.4 % -28.5 %

FLC-RJ 16.2 % -21.0 %

FMLC-RJ 20.6 % -16.6 %

ASCII-Based-RJ 35.3 % 2.3 %

To sum up, the above performance results demonstrate that the ASCII-Based-RJ

algorithm is the most flexible string matching algorithm. Overall, it is superior to all

other string matching algorithms considered in this research.

www.manaraa.com

 55

Chapter Seven: Conclusions and Future Works

7.1. Conclusions

In this thesis, four new single exact pattern matching algorithms are proposed. They are:

FC-RJ, FLC-RJ, FMLC-RJ, and ASCII-Based-RJ algorithms. Furthermore, a string

matching tool (SMT-RJ) has been built to simulate and test the algorithms. The new

algorithms, in addition to the brute force and Boyer-Moore, have been implemented and

compared in the tool.

The FC-RJ, FLC-RJ and FMLC-RJ algorithms outperformed the brute force

algorithm by 7.4 percent, 16.2 percent, and 20.6 percent, respectively. The reason

behind this is that the new algorithms add some restrictions (conditions) to a segment in

the text to be considered as an expected occurrence of the pattern, and then it can be

referenced during the searching phase. If the added conditions are not satisfied for a

segment in the text; it will be excluded during the searching phase.

The ASCII-Based-RJ algorithm outperformed both brute force and Boyer-Moore

algorithms by 35.3 percent and 2.3 percent respectively. In some cases, FLC-RJ and

FMLC-RJ algorithms gave better performance than the others. This occurred when the

length of the pattern was two and three characters. In such cases, the FLC-RJ and

FMLC-RJ do not enter the searching phase, and the time is consumed in the

preprocessing phase, while the other algorithms search for the pattern in the text.

7.2. Future Works

The future works that may enhance the proposed algorithms and the simulator may be

summarized as follows:

 Proposing new algorithms that allow the user to search for multiple patterns in a

source text at the same time.

 Proposing new algorithms that allow the user to search multiple source texts for

multiple patterns at the same time.

 The simulator could be able to make a performance comparison by itself, rather

than the user does it manually. This option may be achieved by allowing the user

to insert a pattern and letting the simulator to search for the pattern in the source

string using the available algorithms, one by another, automatically.

www.manaraa.com

 56

References

1. Aho A. and Corasick M. Efficient string matching: an aid to bibliographic

search, Communications of the ACM, 18(6), 1975, pp.333-340.

2. Alqadi Z., Aqel M. and El Emary I. Multiple-Skip Multiple-Pattern Matching

Algorithm (MSMPMA), International Journal of Computer Science, 34(2),

2007, pp.14-20.

3. Amintoosi M., Yazdi H., Fathy M. and Monsefi R. Using Pattern Matching for

Tiling and Packing Problems, European Journal of Operational Research,

183(3), 2006, pp.950-960.

4. Amir A., Cole R., Hariharan R., Lewenstein M. and Porat E. Overlap

Matching, Journal of Information and Computation, 181(1), 2002, pp.57-74.

5. Boyer R. and Moore J. A Fast String Searching Algorithm, Communications

of the ACM, 20(10), 1977, pp.761-772.

6. Cantone D. and Faro S. A Space Efficient Bit-Parallel Algorithm for the

Multiple String Matching Problem, International Journal of Foundations of

Computer Science, 17(6), 2006, pp.1235-1251.

7. Cegielski P., Guessarian I. and Matiyasevich Y. Multiple serial episodes

matching, Journal of Information Processing Letters, 98(6), 2006, pp.211-218.

8. Charras C. and Lecroq T. Handbook of Exact String-Matching Algorithms,

1st ed., King's College Publications, London-UK, 2004, pp.19-24.

9. Crochemore M., Czumaj A., Gasieniec L., Jarominek S., Lecroq T., Plandowski

W. and Rytter W. Speeding Up Two String Matching Algorithms,

Algorithmica, 12(4/5), 1994, pp.247-267.

10. Crochemore M., Hancart C. and Lecroq T. A Unifying Look at the Apostolico–

Giancarlo String-Matching Algorithm, Journal of Discrete Algorithms, 1(1),

2003, pp.37-52.

11. Danvy O. and Rohde H. On Obtaining the Boyer–Moore String-Matching

Algorithm by Partial Evaluation, Journal of Information Processing Letters,

99(4), 2006, pp.158-162.

12. Franek F., Jennings C. and Smyth W.F. A simple fast hybrid pattern-

matching algorithm, Journal of Discrete Algorithms, 5(4), 2006, pp.682-695.

www.manaraa.com

 57

13. Gongshe L., Jianhua L. and Shenghong L. New multi-pattern matching

algorithm, Journal of Systems Engineering and Electronics, 17(2), 2006,

pp.437-442.

14. Idury R. and Schaffer A. Multiple Matching of Rectangular Patterns,

Information and Computation, 117(1), 1995, pp.78-90.

15. Karp R. and Rabin M. Efficient Randomized Pattern-Matching Algorithms,

IBM Journal on Research Development, 31(2), 1987, pp.249-260.

16. Kim S. and Kim Y. A Fast Multiple String-Pattern Matching Algorithm,

Proc. Of the 17th AoM/IAoM Conference on Computer Science, San Diego,

CA, 1999, pp.44-49.

17. Knuth D., Morris J. and Pratt V. Fast Pattern Matching in Strings, SIAM

Journal on Computing, 6(1), 1977, pp.323-350.

18. Lecroq T. Fast exact string matching algorithms, Journal of Information

Processing Letters, 102(6), 2007, pp.229-235.

19. Lipsky O. and Porat E. L1 Pattern Matching Lower Bound, Journal of

Information Processing Letters, 105(4), 2007, pp.141-143.

20. Michailidis P. and Margaritis K. Processor Array Architectures for Flexible

Approximate String Matching, Journal of Systems Architecture, 54(1-2),

2007, pp.35-54.

21. Morris J. and Pratt V. A Linear Pattern-Matching Algorithm, Technical

Report 40, University of California, Berkeley, 1970.

22. Navarro G. and Fredriksson K. Average Complexity of Exact and

Approximate Multiple String Matching, Journal of Theoretical Computer

Science, 321(2-3), 2004, pp.283-290.

23. Rytter W. The Number of Runs in a String, Journal of Information and

Computation, 205(9), 2007, pp.1459-1469.

24. Salmela L. and Tarhio J. Fast parameterized matching with q-grams,

Proceedings of the 17th Combinatorial Pattern Matching, 2006, pp.354–364.

25. Sheu T.-F., Huang N.-F. and Lee H.-P. Hierarchical Multi-Pattern Matching

Algorithm for Network Content Inspection, Journal of Information Sciences,

178(14), 2008, pp.2880-2898.

26. Sommerville I. Software Engineering. 6th edition, Addison Wesley, 2001.

www.manaraa.com

 58

27. Watson B. A New Family of Commentz-Walter-Style Multiple-Keyword

Pattern Matching Algorithms, South African Computer Journal, 30(1), 2003,

pp.29-33.

28. Watson B. A New Regular Grammar Pattern Matching Algorithm, Journal

of Theoretical Computer Science, 299(1-3), 2002, pp.509-521.

29. Watson B. and Watson R. A Boyer–Moore-Style Algorithm for Regular

Expression Pattern Matching, Journal of Science of Computer Programming,

48(2-3), 2003, pp.99-117.

30. Wu S. and Manber U. A Fast Algorithm for Multi-Pattern Searching,

Technical Report TR-94-17, Department of Computer Science, University of

Arizona, May 1994.

31. Wu Y.-C., Yang J.-C. and Lee Y.-S. A Weighted String Pattern Matching-

Based Passage Ranking Algorithm for Video Question Answering, Journal

of Expert Systems with Applications, 34(4), 2007, pp.2588-2600.

www.manaraa.com

 59

 المـلـخـص

قي شكلة مطاب يف م كن تعر ية ةم ها عمل لى أن صوص ع جود الن قع و جاد موا صغير ص ن إي

(Pattern) وحجمهه(m) كبههر أداخههن نههص(Text) وحجمهه(n) . خوارزميههام مطابقههة وتعتبههر

قة المكوّنام من مهما مكوّنا النصوص يذ البرمجيام التطبي في تنف ستخدامها يتم التي يتم ا تي ال

ير النصوص، في معظم نظم التشغين. تشغيلها سترجاع المعلومام وتحر برامج ا من يد في العد

سرعة أن يكون المستخدم قادرا الضروري من جاد علىوب كن إي عض أو جد ب تي يتوا الأماكن ال

ها خر.في نص آ خن عيّن دا يام نص م ظم خوارزم ستعراض مع تم ا سة هذه الدرا قة في مطاب

يا ، ستخدمة حال فة والم صوص المعرو يام الن قديم خوارزم ضها وت سين بع سبين تح في لك وذ

 جديدة في هذا المجان.

يام تم بع خوارزم قة النصوص، وهفي هذه الدراسة اقتراح أر -FLCو FC-RJ: يلمطاب

RJ وFMLC-RJ وASCII-Based-RJ. ،لك لى ذ طعلاوة ع قة وتم ت صة بمطاب ير أداة خا

يدة، ، (SMT-RJ)النصوص وتم في هذه الأداة تنفيذ وفحص ومقارنة الخوارزميام الأربع الجد

 .Boyer-Mooreو Brute Forceبالإضافة إلى خوارزميتي

تائج هرم ن يام أظ سة أن خوارزم ن FMLC-RJو FLC-RJو FC-RJالدرا ضن مكا أف

ية بنسب متفاوتة. Brute Forceخوارزمية من أداء كان أداء خوارزم -ASCII-Basedبينما

RJ خوارزميتي من أفضن أداءBrute Force وBoyer-Moore .بنسب متفاوتة

www.manaraa.com

 61

Appendix A: The ASCII Table

The following table shows the ASCII code for the characters set. The non-printing

characters are from the decimal 0 to 31, while the printing characters are from decimal

32 to 127.

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60 `

1 01 SOH 33 21 ! 65 41 A 97 61 a

2 02 STX 34 22 “ 66 42 B 98 62 b

3 03 ETX 35 23 # 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d

5 05 ENQ 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27 ‘ 71 47 G 103 67 g

8 08 BS 40 28 (72 48 H 104 68 h

9 09 TAB 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j

11 0B VT 43 2B + 75 4B K 107 6B k

12 0C FF 44 2C , 76 4C L 108 6C l

13 0D CR 45 2D - 77 4D M 109 6D m

14 0E SO 46 2E . 78 4E N 110 6E n

15 0F SI 47 2F / 79 4F O 111 6F o

16 10 DLE 48 30 0 80 50 P 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

19 13 DC3 51 33 3 83 53 S 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u

22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 y

26 1A SUB 58 3A : 90 5A Z 122 7A z

27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }

30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL

www.manaraa.com

 61

Appendix B: Major Code of the SMT-RJ System

Open sub-menu:

Private Sub mnuFileOpen_Click()

'Error handling

On Error GoTo errmsg

With CommonDialog1

 .CancelError = True

 .DialogTitle = "CommonDialog1"

 .Filter = "Text files only (*.txt)|*.txt|All files

 (*.*)|*.*"

 .FilterIndex = 1

 .Flags = cdlOFNHideReadOnly Or cdlOFNOverwritePrompt Or

 cdlOFNPathMustExist

 .InitDir = App.Path

 .ShowOpen

End With

Dim Filenum, i As Integer

FilePath = CommonDialog1.FileName

FileSize = FileLen(FilePath)

Label1.Visible = False

Label2.Visible = False

Label3.Visible = False

rt1.Visible = True

Dim ff As Long, sData As String

'Open and save the whole text file into sFile string variable

Filenum = FreeFile

Open FilePath For Input As Filenum

 sFile = Input(LOF(Filenum), Filenum)

Close Filenum

rt1.Text = sFile

n = Len(sFile)

www.manaraa.com

 62

'Dynamic allocation of arr() to hold the text

ReDim arr(n)

i = 0

ff = FreeFile

'Getting the file into the array arr(n) from sFile

Open FilePath For Input As #ff

 Do While Not EOF(ff)

 sData = Input$(1, ff)

 arr(i) = sData

 i = i + 1

 Loop

Close #ff

errmsg:

'End of Open sub-menu

End Sub

www.manaraa.com

 63

FC-RJ Algorithm Code:

Private Sub mnuFC_Click()

'Check if the user does not open a file

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

 pattern.", 16, "Error"

Else

output = ""

Dim first As String

Dim j As Integer

Dim i As Integer

Dim temp As Long

Dim k As Integer

Dim tempp As String

k = 0

i = 0

p = InputBox("Please enter the pattern: ", "FC-RJ Algorithm")

m = Len(p)

'Load pattern into pattern() if it's length was not zero

If m <> 0 Then

Open App.Path & "\patterns\PatternFile.txt" For Output As #1

Print #1, p

Close #1

ReDim pattern(m) As String

temp = FreeFile

Open App.Path & "\patterns\PatternFile.txt" For Input As #temp

For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

Next k

Close #temp

End If

first = pattern(0)

n = Len(sFile)

www.manaraa.com

 64

'Dynamic allocation of OccuerrenceList() array

ReDim OccurrenceList((n - m) + 1) As Integer

'Search for pattern's first character in the text,

'and save the indices in the OccurrenceList() array

For j = 0 To (n - m)

 If arr(j) = first Then

 OccurrenceList(i) = j

 i = i + 1

 End If

Next j

'After the OccurrenceList is ready, call the searching phase

Call SearchFC(i)

End If

End Sub

Code of the searching phase of FC-RJ algorithm:

Public Sub SearchFC(i As Integer)

output = ""

rt1.Font.Bold = False

rt1.Font.Size = 11

'Search for the pattern if it's first character was found

If i > 0 Then

 'If the pattern's length is one character

 If m = 1 Then

 For y = 0 To i - 1

 output = output & "(" & OccurrenceList(y) & ")"

 rt1.SelStart = OccurrenceList(y)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 Next y

 Else

 If m > 1 Then

 Dim c

 Dim x

 Dim l

 Dim count As Integer

 Dim value As Boolean

 c = x = l = 0

 count = 1

 While c < i

 InstCounter = InstCounter + 1

 value = True

 For l = OccurrenceList(c) + 1 To OccurrenceList(c) +

m - 1

www.manaraa.com

 65

If arr(l) <> pattern(count) Then

 value = False

 Exit For

 End If

 count = count + 1

 Next l

 If value = True Then

 output = output & "(" & OccurrenceList(c) & ")"

 rt1.SelStart = OccurrenceList(c)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 End If

 c = c + 1

 count = 1

 Wend

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine &

"is not found.", 64, "Result"

 End If

 End If

 End If

 Else

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

not found.", 64, "Result"

 End If

End If

End Sub

www.manaraa.com

 66

FLC-RJ Algorithm Code:

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

 pattern.", 16, "Error"

Else

 output = ""

 Dim first, last As String

 Dim i,j,k As Integer

 Dim temp As Long

 Dim tempp As String

 k = 0

 i = 0

 p = InputBox("Please enter the pattern: ", "FLC-RJ

Algorithm")

 m = Len(p)

 If m <> 0 Then

 Open App.Path & "\patterns\PatternFile.txt" For Output

 As #1

 Print #1, p

 Close #1

 ReDim pattern(m) As String

 temp = FreeFile

 Open App.Path & "\patterns\PatternFile.txt" For Input As

 #temp

 For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

 Next k

 Close #temp

 End If

 first = pattern(0)

 last = pattern(m - 1)

 n = Len(sFile)

 'If the pattern's length is > 1, call the searching phase

If m > 1 Then

 ReDim OccurrenceList((n - m) + 1) As Integer

 For j = 0 To (n - m)

 If arr(j) = first And arr(j + m - 1) = last Then

 OccurrenceList(i) = j

 i = i + 1

 End If

 Next j

 Call SearchFLC(i)

 Else

 'If the pattern's length is 1, behave as FC-RJ Algorithm

 If m < 2 Then

 ReDim OccurrenceList((n - m) + 1) As Integer

 For j = 0 To (n - m)

 If arr(j) = first Then

 OccurrenceList(i) = j

 i = i + 1

www.manaraa.com

 67

 End If

 Next j

 Call SearchFC(i)

 End If

End If

End If

End Sub

Code of the searching phase of FLC-RJ algorithm:

Public Sub SearchFLC(i As Integer)

output = ""

rt1.Font.Bold = False

rt1.Font.Size = 11

If i > 0 Then

 Dim c

 Dim x

 Dim l

 Dim count As Integer

 Dim value As Boolean

 c = x = l = 0

 count = 1

 While c < i

 value = True

 For l = OccurrenceList(c) + 1 To OccurrenceList(c) + m-2

 If arr(l) <> pattern(count) Then

 value = False

 Exit For

 End If

 count = count + 1

 Next l

 If value = True Then

 output = output & "(" & OccurrenceList(c) & ")"

 rt1.SelStart = OccurrenceList(c)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 End If

 c = c + 1

 count = 1

 Wend

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

 not found.", 64, "Result"

 End If

 Else

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

 not found.", 64, "Result"

 End If

 End If

End Sub

www.manaraa.com

 68

FMLC-RJ Algorithm Code:

Private Sub mnuFMLC_Click()

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

pattern.", 16, "Error"

Else

 output = ""

 Dim first, mid, last As String

 Dim middle, i, j, k As Integer

 Dim temp As Long

 Dim tempp As String

 k = 0

 i = 0

 p = InputBox("Please enter the pattern: ", "FMLC-RJ

 Algorithm")

 m = Len(p)

 If m <> 0 Then

 Open App.Path & "\patterns\PatternFile.txt" For Output

 As #1

 Print #1, p

 Close #1

 ReDim pattern(m) As String

 temp = FreeFile

 Open App.Path & "\patterns\PatternFile.txt" For Input As

 #temp

 For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

 Next k

 Close #temp

 End If

 first = pattern(0)

 last = pattern(m - 1)

 middle = m / 2

 mid = pattern(middle)

 n = Len(sFile)

 'If the pattern's length is > 2, call the searching phase

 If m > 2 Then

 ReDim OccurrenceList((n - m) + 1) As Integer

 For j = 0 To (n - m)

 If arr(j) = first And arr(j + middle) = mid And

 arr(j + m - 1) = last Then

 OccurrenceList(i) = j

 i = i + 1

 End If

 Next j

 Call SearchFMLC(i)

www.manaraa.com

 69

Else

'If the pattern's length is = 2, behave as FLC-RJ Algorithm

 If m = 2 Then

 ReDim OccurrenceList((n - m) + 1) As Integer

 For j = 0 To (n - m)

 If arr(j) = first And arr(j + m - 1) = last Then

 OccurrenceList(i) = j

 i = i + 1

 End If

 Next j

 Call SearchFLC(i)

 Else

'If the pattern's length is = 1, behave as FC-RJ Algorithm

 ReDim OccurrenceList((n - m) + 1) As Integer

 For j = 0 To (n - m)

 If arr(j) = first Then

 OccurrenceList(i) = j

 i = i + 1

 End If

 Next j

 Call SearchFC(i)

 End If

End If

End If

End Sub

Code of the searching phase of FMLC-RJ algorithm:

Public Sub SearchFMLC(i As Integer)

output = ""

rt1.Font.Bold = False

rt1.Font.Size = 11

If i > 0 Then

 Dim c, x, l as integer

 Dim middle As Integer

 Dim count As Integer

 Dim value As Boolean

 middle = m / 2

 c = x = l = 0

 count = 1

 While c < i

 value = True

 For l = OccurrenceList(c) + 1 To OccurrenceList(c) + m-2

 If count = middle Then

 l = l + 1

 count = count + 1

 Else

 If arr(l) <> pattern(count) Then

 value = False

 Exit For

 End If

 End If

 count = count + 1

 Next l

www.manaraa.com

 71

 If value = True Then

 output = output & "(" & OccurrenceList(c) & ")"

 rt1.SelStart = OccurrenceList(c)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 End If

 c = c + 1

 count = 1

 Wend

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

 not found.", 64, "Result"

 End If

 Else

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

 not found.", 64, "Result"

 End If

End If

End Sub

www.manaraa.com

 71

ASCII-Based-RJ Algorithm Code:

Private Sub mnuASCIIAlg_Click()

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

 pattern.", 16, "Error"

Else

 output = ""

 Dim j As Integer

 Dim i As Integer

 Dim temp As Long

 Dim k As Integer

 Dim tempp As String

 Dim Ascii_Arr() As Integer

 Dim Skip_Arr() As Integer

 Dim y, z, x As Integer

 k = i = 0

 p = InputBox("Please enter the pattern: ", "ASCII-Based-RJ

 Algorithm")

 m = Len(p)

 If m <> 0 Then

 Open App.Path & "\patterns\PatternFile.txt" For Output

 As #1

 Print #1, p

 Close #1

 ReDim pattern(m) As String

 temp = FreeFile

 Open App.Path & "\patterns\PatternFile.txt" For Input As

 #temp

 For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

 Next k

 Close #temp

 End If

 ASize = 256

 y = z = 0

 x = n - 1

ReDim Ascii_Arr(ASize) As Integer

For mmm = o To (ASize - 1)

 Ascii_Arr(mmm) = 0

Next mmm

ReDim Skip_Arr(n) As Integer

For j = 0 To m - 1

 Ascii_Arr(Asc(pattern(j))) = Ascii_Arr(Asc(pattern(j))) + 1

Next j

www.manaraa.com

 72

For x = (n - 1) To 0 Step -1

 If Ascii_Arr(Asc(arr(x))) = 0 And x >= (m - 1) Then

 For y = (x - m + 1) To x

 If Skip_Arr(y) = 0 Then

 Skip_Arr(y) = -1

 Else

 Exit For

 End If

 Next y

 Else

 If Ascii_Arr(Asc(arr(x))) = 0 And x < (m - 1) Then

 For y = 0 To x

 If Skip_Arr(y) = 0 Then

 Skip_Arr(y) = -1

 Else

 Exit For

 End If

 Next y

 End If

 End If

Next x

ReDim OccurrenceList((n - m) + 1) As Integer

For z = 0 To (n - m)

 If Skip_Arr(z) <> -1 And arr(z) = pattern(0) Then

 OccurrenceList(i) = z

 i = i + 1

 End If

Next z

Call SearchASCIIAlg(i)

End If

End Sub

Code of the searching phase of ASCII-Based-RJ algorithm:

Public Sub SearchASCIIAlg(i As Integer)

output = ""

rt1.Font.Bold = False

rt1.Font.Size = 11

If i > 0 Then

 If m = 1 Then

 For y = 0 To i - 1

 output = output & "(" & OccurrenceList(y) & ")"

 rt1.SelStart = OccurrenceList(y)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 Next y

 Else

 If m > 1 Then

 Dim c

 Dim x

 Dim l

www.manaraa.com

 73

 Dim count As Integer

 Dim value As Boolean

 c = x = l = 0

 count = 1

 While c < i

 value = True

 For l = OccurrenceList(c)+1 To OccurrenceList(c)+m-1

 If arr(l) <> pattern(count) Then

 value = False

 Exit For

 End If

 count = count + 1

 Next l

 If value = True Then

 output = output & "(" & OccurrenceList(c) & ")"

 rt1.SelStart = OccurrenceList(c)

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 End If

 c = c + 1

 count = 1

 Wend

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine &

 "is not found.", 64, "Result"

 End If

 End If

 End If

 Else

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine &

 "is not found.", 64, "Result"

 End If

 End If

End Sub

www.manaraa.com

 74

Brute Force Algorithm Code:

Private Sub mnuBruteForce_Click()

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

 pattern.", 16, "Error"

Else

 output = ""

 rt1.Font.Bold = False

 rt1.Font.Size = 11

 Dim j As Integer

 Dim temp As Long

 Dim k As Integer

 Dim s As Integer

 Dim tempp As String

 k = 0

 p = InputBox("Please enter the pattern: ", "Brute Force

Algorithm")

 m = Len(p)

 If m <> 0 Then

 Open App.Path & "\patterns\PatternFile.txt" For Output

 As #1

 Print #1, p

 Close #1

 ReDim pattern(m) As String

 temp = FreeFile

 Open App.Path & "\patterns\PatternFile.txt" For Input As

 #temp

 For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

 Next k

 Close #temp

 End If

 n = Len(sFile)

 For j = 0 To (n - m)

 For s = 0 To (m - 1)

 If pattern(s) <> arr(j + s) Then

 Exit For

 End If

 Next s

 If s = m Then

 output = output & "(" & (j) & ")"

 rt1.SelStart = j

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 End If

 Next j

www.manaraa.com

 75

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

not found.", 64, "Result"

 End If

End If

End Sub

www.manaraa.com

 76

Boyer-Moor Algorithm Code:

Private Sub mnuBM_Click()

If sFile = "" Then

 MsgBox "Please insert a text before trying to search for a

 pattern.", 16, "Error"

Else

 output = ""

 rt1.Font.Bold = False

 rt1.Font.Size = 11

 Dim j As Integer

 Dim temp As Long

 Dim k As Integer

 Dim i As Integer

 Dim jj As Integer

 Dim tempp As String

 Dim max As Integer

 k = 0

 p = InputBox("Please enter the pattern: ", "Boyer-Moore

Algorithm")

 m = Len(p)

 If m <> 0 Then

 Open App.Path & "\patterns\PatternFile.txt" For Output

 As #1

 Print #1, p

 Close #1

 ReDim pattern(m) As String

 temp = FreeFile

 Open App.Path & "\patterns\PatternFile.txt" For Input As

 #temp

 For k = 0 To m - 1

 tempp = Input$(1, temp)

 pattern(k) = tempp

 Next k

 Close #temp

 End If

 ASize = 256

 ReDim bmGs(m) As Integer

 ReDim bmBc(ASize) As Integer

 'Preprocessing

 Call preBmGs

 Call preBmBc

 'Searching

 j = o

 While j <= (n - m)

 For i = (m - 1) To 0 Step -1

 If pattern(i) <> arr(i + j) Then

 Exit For

 End If

 Next i

www.manaraa.com

 77

 If i < 0 Then

 output = output & "(" & j & ")"

 rt1.SelStart = j

 rt1.SelLength = Len(p)

 rt1.SelColor = 2211

 rt1.SelFontSize = 14

 rt1.SelUnderline = True

 j = j + bmGs(0)

 Else

 If bmGs(i) >= (bmBc(Asc(arr(i + j))) - m + 1 + i) Then

 jj=bmGs(i) Else jj=(bmBc(Asc(arr(i+j)))– m + 1 + i)

 j = j + jj

 End If

 Wend

 If output = "" Then

 MsgBox "The pattern:" & vbNewLine & p & vbNewLine & "is

 not found.", 64, "Result"

 End If

End Sub

Code of the preBmGs() routine of Boyer-Moore algorithm:

Public Sub preBmGs()

Dim i, j As Integer

Call suffixes

For i = 0 To m - 1

 bmGs(i) = m

Next i

j = 0

For i = (m - 1) To 0 Step -1

 If suff(i) = (i + 1) Then

 While j < (m - 1 - i)

 If bmGs(j) = m Then

 bmGs(j) = (m - 1 - i)

 End If

 j = j + 1

 Wend

 End If

Next i

For i = 0 To (m - 2)

 bmGs(m - 1 - suff(i)) = (m - 1 - i)

Next i

End Sub

www.manaraa.com

 78

Code of the suffixes() routine of Boyer-Moore algorithm:

Public Sub suffixes()

Dim f, g, i As Integer

ReDim suff(m) As Integer

suff(m - 1) = m

g = m - 1

For i = (m - 2) To 0 Step -1

 If i > g Then

 If (suff(i + m - 1 - f) < (i - g)) Then

 suff(i) = suff(i + m - 1 - f)

 End If

 Else

 If i < g Then g = i

 f = i

 While g > 0 And (pattern(g) = pattern(g + m - 1 - f))

 g = g - 1

 Wend

 suff(i) = f - g

 End If

Next i

End Sub

Code of the preBmBc() routine of Boyer-Moore algorithm:

Public Sub preBmBc()

Dim i As Integer

Dim q As Integer

For i = 0 To (ASize - 1)

 bmBc(i) = m

Next i

For q = 0 To (m - 2)

 bmBc(Asc(pattern(q))) = (m - q - 1)

Next q

End Sub

www.manaraa.com

 79

Small Letters Text Generator's Code:

Private Sub mnuSLO_Click()

 Dim x As Integer

 Dim NameOfFile As String

 Dim NumOfChars As Integer

 Dim max As Integer

 Dim min As Integer

 Dim random As Integer

 Dim str As String

 NumOfChars = Val(InputBox("How many charaters you want to

 generate?", "Number of characters"))

 NameOfFile = InputBox("Insert a name for the file: " &

 vbNewLine & vbNewLine & "Note: don't type extenstion.

 The file will be saved as (.txt) by default.", "Name of

 file")

 max = 122

 min = 97

 For x = 1 To NumOfChars

 Randomize

 random = Int(Rnd * (max - min)) + min

 str = str & Chr(random)

 Next x

 Open App.Path & "\texts\" & NameOfFile & ".txt" For Output As

 #2

 Print #2, str

 Close #2

End Sub

www.manaraa.com

 81

Capital Letters Text Generator's Code:

Private Sub mnuCLO_Click()

 Dim x As Integer

 Dim NameOfFile As String

 Dim NumOfChars As Integer

 Dim max As Integer

 Dim min As Integer

 Dim random As Integer

 Dim str As String

 NumOfChars = Val(InputBox("How many charaters you want to

 generate?", "Number of characters"))

 NameOfFile = InputBox("Insert a name for the file: " &

 vbNewLine & vbNewLine & "Note: don't type extenstion. The

 file will be saved as (.txt) by default.", "Name of file")

 max = 90

 min = 65

 For x = 1 To NumOfChars

 Randomize

 random = Int(Rnd * (max - min)) + min

 str = str & Chr(random)

 Next x

 Open App.Path & "\texts\" & NameOfFile & ".txt" For Output As

 #2

 Print #2, str

 Close #2

End Sub

www.manaraa.com

 81

Mixed Letters Text Generator's Code:

Private Sub mnuMixed_Click()

 Dim x As Integer

 Dim NameOfFile As String

 Dim NumOfChars As Integer

 Dim max As Integer

 Dim min As Integer

 Dim random As Integer

 Dim str As String

 NumOfChars = Val(InputBox("How many charaters you want to

 generate?", "Number of characters"))

 NameOfFile = InputBox("Insert a name for the file: " &

 vbNewLine & vbNewLine & "Note: don't type extenstion. The

 file will be saved as (.txt) by default.", "Name of file")

 max = 126

 min = 32

 For x = 1 To NumOfChars

 Randomize

 random = Int(Rnd * (max - min)) + min

 str = str & Chr(random)

 Next x

 Open App.Path & "\texts\" & NameOfFile & ".txt" For Output As

 #2

 Print #2, str

 Close #2

End Sub

www.manaraa.com

 82

Patterns Generator's Code:

Private Sub mnuGeneratePat_Click()

If n = 0 Then

 MsgBox "Please open a text file before generating

 patterns.", 16, "Error"

Else

 Dim x, i, max, PatLen, z, RandomIndex As Integer

 Dim PatStr As String

 max = n - 20

 PatLen = 14

 i = 1

 For x = 0 To 299

 PatStr = ""

 RandomIndex = Int(Rnd * max)

 For z = RandomIndex To (RandomIndex + PatLen - 1)

 PatStr = PatStr + arr(z)

 Next z

 Open App.Path & "\patterns\Len_14\" & x + 1 & ".txt" For

 Output As #i

 Print #i, PatStr

 Close #i

 i = i + 1

 Next x

 MsgBox "The patterns have been created successfully.", 64,

 "Random Patterns"

End If

End Sub

www.manaraa.com

 83

Text File Info Code:

Private Sub mnuFileInfo_Click()

If sFile = "" Then

 MsgBox "Please open a text file before trying to get info.",

 16, "Error"

Else

 output = ""

 Dim NumOfWords As Integer

 Dim NumOfCharsWSpaces As Integer

 Dim NumOfCharsNoSpaces As Integer

 Dim NumOfSpaces As Integer

 Dim c As Integer

 For c = 0 To n - 1

 If arr(c) = " " Then

 NumOfSpaces = NumOfSpaces + 1

 If arr(c - 1) <> " " Then

 NumOfWords = NumOfWords + 1

 End If

 End If

 Next c

 If arr(n - 1) <> " " Then NumOfWords = NumOfWords + 1

 NumOfCharsWSpaces = n

 NumOfCharsNoSpaces = n - NumOfSpaces

 MsgBox "Number of words: " & NumOfWords & vbNewLine & "Number

 of characters with spaces: " & n & vbNewLine & "Number of

 characters without spaces: " & NumOfCharsNoSpaces &

 vbNewLine & "Number of spaces: " & NumOfSpaces & vbNewLine

 & "File path: " & FilePath & vbNewLine & "File size: " &

 FileSize & " bytes", 64, "File info"

End If

End Sub

